166 resultados para Democratic management. School managers. Government department
Resumo:
Website usability can be defined as the ease of use of websites. General usability, pedagogical usability, technical usability and intercultural usability can be considered and examined for the understanding of the usability of language learning websites, which requires a discipline-specific approach. In the field of computer-assisted language learning, usability issues have been addressed mainly in terms of evaluation criteria and have been commonly discussed in relation to user expectations and user experiences. In spite of a growing interest in intercultural language learning, however, little research on intercultural usability of language learning websites has been published yet. There is a need to answer the question of how language learning websites integrate the target language and culture for the development of intercultural sensitivity and competence. This article explores intercultural aspects of language learning websites and presents usability guidelines for designing intercultural language learning websites.
Resumo:
Flexible design concept is a relatively new trend in airport terminal design which is believed to facilitate the ever changing needs of a terminal. Current architectural design processes become more complex every day because of the introduction of new building technologies where the concept of flexible airport terminal would apparently make the design process even more complex. Previous studies have demonstrated that ever growing aviation industry requires airport terminals to be planned, designed and constructed in such a way that should allow flexibility in design process. In order to adopt the philosophy of ‘design for flexibility’ architects need to address a wide range of differing needs. An appropriate integration of the process models, prior to the airport terminal design process, is expected to uncover the relationships that exist between spatial layout and their corresponding functions. The current paper seeks to develop a way of sharing space adjacency related information obtained from the Business Process Models (BPM) to assist in defining flexible airport terminal layouts. Critical design parameters are briefly investigated at this stage of research whilst reviewing the available design alternatives and an evaluation framework is proposed in the current paper. Information obtained from various design layouts should assist in identifying and defining flexible design matrices allowing architects to interpret and to apply those throughout the lifecycle of the terminal building.
Resumo:
In this paper we report on the qualitative component of a study that explored middle level academic leaders’ experiences of (un)ethical practices and ethical dilemmas in their daily work. An electronic survey was distributed to academic leaders from universities across three Australian states. There are three major findings in this study. First, the messy context of universities is providing a fertile ground for ethical dilemmas to flourish. Second, the two main categories of unethical practices identified by participants were academic dishonesty and inappropriate behaviour towards staff and students. Third, the ethical dilemmas that emerged focused on the academic leaders’ strong sense of professional ethics that were in conflict with an ethic of care, supervisors’ directives, and the rules and policies of the organisation.
Resumo:
In 2007, the Queensland University of Technology (QUT) received funding from the Australian Government through the NCRIS program and from the then Queensland Government Department of State Development to construct a pilot research and development facility for the production of bioethanol and other renewable biocommodities from biomass including sugar cane bagasse. This facility is being constructed adjacent to the Racecourse Sugar Mill in Mackay and is known as the Mackay Renewable Biocommodities Pilot Plant (MRBPP). The MRBPP will be capable of processing biomass through a pressurised pretreatment reactor and includes equipment for enzymatic saccharification, fermentation and distillation to produce ethanol. Lignin and fermentation co-products will also be produced at a pilot scale for product development and testing.
Resumo:
Post–disaster reconstruction projects are often considered ineffectual or unproductive because on many occasions in the past they have performed extremely poorly during post-contract occupation, or have failed altogether to deliver acceptable outcomes. In some cases, these projects have already failed even before their completion, leading many sponsor aid organisations to hold these projects up as examples of how not to deliver housing reconstruction. Research into some previous unsuccessful projects has revealed that often the lack of adequate knowledge regarding the context and complexity involved in the implementation of these projects is generally responsible for their failure. Post-disaster reconstruction projects are certainly very complex in nature, often very context-specific and they can vary widely in magnitude. Despite such complexity, reconstruction projects can still have a high likelihood of success if adequate consideration is given to the importance of factors which are known to positively influence reconstruction efforts. Good outcomes can be achieved when planners and practitioners ensure best practices are embedded in the design of reconstruction projects at the time reconstruction projects they are first instigated. This paper outlines and discusses factors that significantly contribute to the successful delivery of post-disaster housing reconstruction projects.
Resumo:
As highlighted by previous work in Normal Accident Theory1 and High Reliability Organisations, 2 the ability of a system to be flexible is of critical importance to its capability to prepare for, respond to, and recover from disturbance and disasters. This paper proposes that the research into ‘edge organisations’3 and ‘agility’4 is a potential means to operationalise components that embed high reliable traits in the management and oversight of critical infrastructure systems. Much prior work has focused on these concepts in a military frame whereas the study reported on here examines the application of these concepts to aviation infrastructure, specifically, a commercial international airport. As a commercial entity functions in a distinct manner from a military organisation this study aims to better understand the complementary and contradictory components of the application of agility work to a commercial context. Findings highlight the challenges of making commercial operators of infrastructure systems agile as well as embedding traits of High Reliability in such complex infrastructure settings.
Resumo:
This paper presents an approach to assess the resilience of a water supply system under the impacts of climate change. Changes to climate characteristics such as rainfall, evapotranspiration and temperature can result in changes to the global hydrological cycle and thereby adversely impact on the ability of water supply systems to meet service standards in the future. Changes to the frequency and characteristics of floods and droughts as well as the quality of water provided by groundwater and surface water resources are the other consequences of climate change that will affect water supply system functionality. The extent and significance of these changes underline the necessity for assessing the future functionality of water supply systems under the impacts of climate change. Resilience can be a tool for assessing the ability of a water supply system to meet service standards under the future climate conditions. The study approach is based on defining resilience as the ability of a system to absorb pressure without going into failure state as well as its ability to achieve an acceptable level of function quickly after failure. In order to present this definition in the form of a mathematical function, a surrogate measure of resilience has been proposed in this paper. In addition, a step-by-step approach to estimate resilience of water storage reservoirs is presented. This approach will enable a comprehensive understanding of the functioning of a water storage reservoir under future climate scenarios and can also be a robust tool to predict future challenges faced by water supply systems under the consequence of climate change.
Resumo:
The Council of Australian Governments (COAG) in 2003 gave in-principle approval to a best-practice report recommending a holistic approach to managing natural disasters in Australia incorporating a move from a traditional response-centric approach to a greater focus on mitigation, recovery and resilience with community well-being at the core. Since that time, there have been a range of complementary developments that have supported the COAG recommended approach. Developments have been administrative, legislative and technological, both, in reaction to the COAG initiative and resulting from regular natural disasters. This paper reviews the characteristics of the spatial data that is becoming increasingly available at Federal, state and regional jurisdictions with respect to their being fit for the purpose for disaster planning and mitigation and strengthening community resilience. In particular, Queensland foundation spatial data, which is increasingly accessible by the public under the provisions of the Right to Information Act 2009, Information Privacy Act 2009, and recent open data reform initiatives are evaluated. The Fitzroy River catchment and floodplain is used as a case study for the review undertaken. The catchment covers an area of 142,545 km2, the largest river catchment flowing to the eastern coast of Australia. The Fitzroy River basin experienced extensive flooding during the 2010–2011 Queensland floods. The basin is an area of important economic, environmental and heritage values and contains significant infrastructure critical for the mining and agricultural sectors, the two most important economic sectors for Queensland State. Consequently, the spatial datasets for this area play a critical role in disaster management and for protecting critical infrastructure essential for economic and community well-being. The foundation spatial datasets are assessed for disaster planning and mitigation purposes using data quality indicators such as resolution, accuracy, integrity, validity and audit trail.
Resumo:
This paper presents an approach for identifying the limit states of resilience in a water supply system when influenced by different types of pressure (disturbing) forces. Understanding of systemic resilience facilitates identification of the trigger points for early managerial action to avoid further loss of ability to provide satisfactory service availability when the ability to supply water is under pressure. The approach proposed here is to illustrate the usefulness of a surrogate measure of resilience depicted in a three dimensional space encompassing independent pressure factors. That enables visualisation of the transition of the system-state (resilience) between high to low resilience regions and acts as an early warning trigger for decision-making. The necessity of a surrogate measure arises as a means of linking resilience to the identified pressures as resilience cannot be measured directly. The basis for identifying the resilience surrogate and exploring the interconnected relationships within the complete system, is derived from a meta-system model consisting of three nested sub-systems representing the water catchment and reservoir; treatment plant; and the distribution system and end-users. This approach can be used as a framework for assessing levels of resilience in different infrastructure systems by identifying a surrogate measure and its relationship to relevant pressures acting on the system.
Resumo:
Critical road infrastructure (such as tunnels and overpasses) is of major significance to society and constitutes major components of interdependent, ‘systems and networks’. Failure in critical components of these wide area infrastructure systems can often result in cascading disturbances with secondary and tertiary impacts - some of which may become initiating sources of failure in their own right, triggering further systems failures across wider networks. Perrow1) considered the impact of our increasing use of technology in high-risk fields, analysing the implications on everyday life and argued that designers of these types of infrastructure systems cannot predict every possible failure scenario nor create perfect contingency plans for operators. Challenges exist for transport system operators in the conceptualisation and implementation of response and subsequent recovery planning for significant events. Disturbances can vary from reduced traffic flow causing traffic congestion throughout the local road network(s) and subsequent possible loss of income to businesses and industry to a major incident causing loss of life or complete loss of an asset. Many organisations and institutions, despite increasing recognition of the effects of crisis events, are not adequately prepared to manage crises2). It is argued that operators of land transport infrastructure are in a similar category of readiness given the recent instances of failures in road tunnels. These unexpected infrastructure failures, and their ultimately identified causes, suggest there is significant room for improvement. As a result, risk profiles for road transport systems are often complex due to the human behaviours and the inter-mix of technical and organisational components and the managerial coverage needed for the socio-technical components and the physical infrastructure. In this sense, the span of managerial oversight may require new approaches to asset management that combines the notion of risk and continuity management. This paper examines challenges in the planning of response and recovery practices of owner/operators of transport systems (above and below ground) in Australia covering: • Ageing or established infrastructure; and • New-build infrastructure. With reference to relevant international contexts this paper seeks to suggest options for enhancing the planning and practice for crisis response in these transport networks and as a result support the resilience of Critical Infrastructure.
Resumo:
A range of authors from the risk management, crisis management, and crisis communications literature have proposed different models as a means of understanding components of crisis. A generic component of these sources has focused on preparedness practices before disturbance events and response practices during events. This paper provides a critical analysis of three key explanatory models of how crises escalate highlighting the strengths and limitations of each approach. The paper introduces an optimised conceptual model utilising components from the previous work under the four phases of pre-event, response, recovery, and post-event. Within these four phases, a ten step process is introduced that can enhance understanding of the progression of distinct stages of disturbance for different types of events. This crisis evolution framework is examined as a means to provide clarity and applicability to a range of infrastructure failure contexts and provide a path for further empirical investigation in this area.
Resumo:
Awareness to avoid losses and casualties due to rain-induced landslide is increasing in regions that routinely experience heavy rainfall. Improvements in early warning systems against rain-induced landslide such as prediction modelling using rainfall records, is urgently needed in vulnerable regions. The existing warning systems have been applied using stability chart development and real-time displacement measurement on slope surfaces. However, there are still some drawbacks such as: ignorance of rain-induced instability mechanism, mislead prediction due to the probabilistic prediction and short time for evacuation. In this research, a real-time predictive method was proposed to alleviate the drawbacks mentioned above. A case-study soil slope in Indonesia that failed in 2010 during rainfall was used to verify the proposed predictive method. Using the results from the field and laboratory characterizations, numerical analyses can be applied to develop a model of unsaturated residual soils slope with deep cracks and subject to rainwater infiltration. Real-time rainfall measurement in the slope and the prediction of future rainfall are needed. By coupling transient seepage and stability analysis, the variation of safety factor of the slope with time were provided as a basis to develop method for the real-time prediction of the rain-induced instability of slopes. This study shows the proposed prediction method has the potential to be used in an early warning system against landslide hazard, since the FOS value and the timing of the end-result of the prediction can be provided before the actual failure of the case study slope.
Resumo:
When a community already torn by an event such as a prolonged war, is then hit by a natural disaster, the negative impact of this subsequent disaster in the longer term can be extremely devastating. Natural disasters further damage already destabilised and demoralised communities, making it much harder for them to be resilient and recover. Communities often face enormous challenges during the immediate recovery and the subsequent long term reconstruction periods, mainly due to the lack of a viable community involvement process. In post-war settings, affected communities, including those internally displaced, are often conceived as being completely disabled and are hardly ever consulted when reconstruction projects are being instigated. This lack of community involvement often leads to poor project planning, decreased community support, and an unsustainable completed project. The impact of war, coupled with the tensions created by the uninhabitable and poor housing provision, often hinders the affected residents from integrating permanently into their home communities. This paper outlines a number of fundamental factors that act as barriers to community participation related to natural disasters in post-war settings. The paper is based on a statistical analysis of, and findings from, a questionnaire survey administered in early 2012 in Afghanistan.
Resumo:
While scientists are still debating the level of climate change impact to new weather patterns, there have been some devastating natural disasters worldwide in the last decade. From cyclones to earthquakes and from Tsunamis to landslides, these disasters occur with formidable forces and crushing effects. As one of the most important arrangements to erase the negative influence of natural disasters and help with the recovery and redevelopment of the hit area, reconstruction is of utmost importance in light of sustainable objectives. However, current reconstruction practice confronts quite a lot of criticisms for focusing on providing short-term necessities. How to conduct the post disaster reconstruction in a long-term perspective and achieve sustainable development is thereby a highlight for industry practice and research. This paper introduced an on-going research project which is aimed at establishing an operational framework for improving sustainability performance of post disaster reconstruction by identifying critical sustainable factors and exploring their internal relationships. The research reported in this paper is part of the project. After a comprehensive literature review, 17 potential critical sustainability factors for post disaster reconstruction were identified. Preliminary examination and discussion of the factors was conducted.
Resumo:
Natural disasters can have adverse effect on human lives. To raise the awareness of research and better combat future events, it is important to identify recent research trends in the area of post disaster reconstruction (PDR). The authors used a three-round literature review strategy to study journal papers published in the last decade that are related to PDR with specific conditions using the Scopus search engine. A wide range of PDR related papers from a general perspective was examined in the first two rounds while the final round established 88 papers as target publications through visual examination of the abstracts, keywords and as necessary, main texts. These papers were analysed in terms of research origins, active researchers, research organisations, most cited papers, regional concerns, major themes and deliverables, for clues of the past trends and future directions. The need for appropriate PDR research is increasingly recognised. The publication number multiplied 5 times from 2002 to 2012. For PDR research with a construction perspective, the increase is sixfold. Developing countries such as those in Asia attract almost 50% researchers' attention for regional concerns while the US is the single most concentrated (24%) country. Africa is hardly represented. Researchers in developed countries lead in worldwide PDR research. This contrasts to the need for expertise in developing countries. Past works focused on waste management, stakeholder analysis, resourcing, infrastructure issue, resilience and vulnerability, reconstruction approach, sustainable reconstruction and governance issues. Future research should respond to resourcing, integrated development, sustainability and resilience building to cover the gaps. By means of a holistic summary and structured analysis of key patterns, the authors hope to provide a streamlined access to existing research findings and make predictions of future trends. They also hope to encourage a more holistic approach to PDR research and international collaborations.