341 resultados para Conventional polymer matrix
Resumo:
In this paper, an enriched radial point interpolation method (e-RPIM) is developed the for the determination of crack tip fields. In e-RPIM, the conventional RBF interpolation is novelly augmented by the suitable trigonometric basis functions to reflect the properties of stresses for the crack tip fields. The performance of the enriched RBF meshfree shape functions is firstly investigated to fit different surfaces. The surface fitting results have proven that, comparing with the conventional RBF shape function, the enriched RBF shape function has: (1) a similar accuracy to fit a polynomial surface; (2) a much better accuracy to fit a trigonometric surface; and (3) a similar interpolation stability without increase of the condition number of the RBF interpolation matrix. Therefore, it has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF shape function, but also can accurately reflect the properties of stresses for the crack tip fields. The system of equations for the crack analysis is then derived based on the enriched RBF meshfree shape function and the meshfree weak-form. Several problems of linear fracture mechanics are simulated using this newlydeveloped e-RPIM method. It has demonstrated that the present e-RPIM is very accurate and stable, and it has a good potential to develop a practical simulation tool for fracture mechanics problems.
Resumo:
Objective: To identify agreement levels between conventional longitudinal evaluation of change (post–pre) and patient-perceived change (post–then test) in health-related quality of life. Design: A prospective cohort investigation with two assessment points (baseline and six-month follow-up) was implemented. Setting: Community rehabilitation setting. Subjects: Frail older adults accessing community-based rehabilitation services. Intervention: Nil as part of this investigation. Main measures: Conventional longitudinal change in health-related quality of life was considered the difference between standard EQ-5D assessments completed at baseline and follow-up. To evaluate patient-perceived change a ‘then test’ was also completed at the follow-up assessment. This required participants to report (from their current perspective) how they believe their health-related quality of life was at baseline (using the EQ-5D). Patient-perceived change was considered the difference between ‘then test’ and standard follow-up EQ-5D assessments. Results: The mean (SD) age of participants was 78.8 (7.3). Of the 70 participants 62 (89%) of data sets were complete and included in analysis. Agreement between conventional (post–pre) and patient-perceived (post–then test) change was low to moderate (EQ-5D utility intraclass correlation coefficient (ICC)¼0.41, EQ-5D visual analogue scale (VAS) ICC¼0.21). Neither approach inferred greater change than the other (utility P¼0.925, VAS P¼0.506). Mean (95% confidence interval (CI)) conventional change in EQ-5D utility and VAS were 0.140 (0.045,0.236) and 8.8 (3.3,14.3) respectively, while patient-perceived change was 0.147 (0.055,0.238) and 6.4 (1.7,11.1) respectively. Conclusions: Substantial disagreement exists between conventional longitudinal evaluation of change in health-related quality of life and patient-perceived change in health-related quality of life (as measured using a then test) within individuals.
Resumo:
Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.
Resumo:
In this paper, an enriched radial point interpolation method (e-RPIM) is developed the for the determination of crack tip fields. In e-RPIM, the conventional RBF interpolation is novelly augmented by the suitable trigonometric basis functions to reflect the properties of stresses for the crack tip fields. The performance of the enriched RBF meshfree shape functions is firstly investigated to fit different surfaces. The surface fitting results have proven that, comparing with the conventional RBF shape function, the enriched RBF shape function has: (1) a similar accuracy to fit a polynomial surface; (2) a much better accuracy to fit a trigonometric surface; and (3) a similar interpolation stability without increase of the condition number of the RBF interpolation matrix. Therefore, it has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF shape function, but also can accurately reflect the properties of stresses for the crack tip fields. The system of equations for the crack analysis is then derived based on the enriched RBF meshfree shape function and the meshfree weak-form. Several problems of linear fracture mechanics are simulated using this newlydeveloped e-RPIM method. It has demonstrated that the present e-RPIM is very accurate and stable, and it has a good potential to develop a practical simulation tool for fracture mechanics problems.
Resumo:
IEC 61850 Process Bus technology has the potential to improve cost, performance and reliability of substation design. Substantial costs associated with copper wiring (designing, documentation, construction, commissioning and troubleshooting) can be reduced with the application of digital Process Bus technology, especially those based upon international standards. An IEC 61850-9-2 based sampled value Process Bus is an enabling technology for the application of Non-Conventional Instrument Transformers (NCIT). Retaining the output of the NCIT in its native digital form, rather than conversion to an analogue output, allows for improved transient performance, dynamic range, safety, reliability and reduced cost. In this paper we report on a pilot installation using NCITs communicating across a switched Ethernet network using the UCAIug Implementation Guideline for IEC 61850-9-2 (9-2 Light Edition or 9-2LE). This system was commissioned in a 275 kV Line Reactor bay at Powerlink Queensland’s Braemar substation in 2009, with sampled value protection IEDs 'shadowing' the existing protection system. The results of commissioning tests and twelve months of service experience using a Fibre Optic Current Transformer (FOCT) from Smart Digital Optics (SDO) are presented, including the response of the system to fault conditions. A number of remaining issues to be resolved to enable wide-scale deployment of NCITs and IEC 61850-9-2 Process Bus technology are also discussed.
Resumo:
The coordination polymer complex tetracesium bis(5-nitroisophthalate) heptahydrate [Cs4(C8H3NO6)2 (H2O)7]n has been synthesized and characterized using single-crystal X-ray diffraction. Crystals are monoclinic, space group P21/c, with Z = 4 in a cell with dimensions a = 12.3213(3), b =6.7557(2) c = 36.2020(9) Å, β = 90.548(2)o. The complex is based on a repeating unit comprising four independent and different Cs coordination centres, two 6-coordinate, and two 8-coordinate [Cs-O, range 2.959(5)-3.386(5)Å], and seven water molecules, two of which are monodentate and the other five bridging, while all other oxygen atoms in the structure, including those of the nitro groups form inter-Cs bridges. Extensive water O-H…O hydrogen-bonding interactions give a three-dimensional framework. This structure represents the first of an alkali metal compound of 5-nitroisophthalic acid that has been reported.
Resumo:
Three different methods of inclusion of current measurements by phasor measurement units (PMUs) in a power sysetm state estimator is investigated. A comprehensive formulation of the hybrid state estimator incorporating conventional, as well as PMU measurements, is presented for each of the three methods. The behaviour of the elements because of the current measurements in the measurement Jacobian matrix is examined for any possible ill-conditioning of the state estimator gain matrix. The performance of the state estimators are compared in terms of the convergence properties and the varian in the estimated states. The IEEE 14-bus and IEEE 300-bus systems are used as test beds for the study.
Resumo:
Chondrocyte density in articular cartilage is known to change with the development and growth of the tissue and may play an important role in the formation of a functional extracellular matrix (ECM). The objective of this study was to determine how initial chondrocyte density in an alginate hydrogel affects the matrix composition, its distribution between the cell-associated (CM) and further removed matrix (FRM) fractions, and the tensile mechanical properties of the developing engineered cartilage. Alginate constructs containing primary bovine chondrocytes at densities of 0, 4, 16, and 64 million cells/ml were fabricated and cultured for 1 or 2 weeks, at which time structural, biochemical, and mechanical properties were analyzed. Both matrix content and distribution varied with the initial cell density. Increasing cell density resulted in an increasing content of collagen and sulfated-glycosaminoglycan (GAG) and an increasing proportion of these molecules localized in the CM. While the equilibrium tensile modulus of cell-free alginate did not change with time in culture, the constructs with highest cell density were 116% stiffer than cell-free controls after 2 weeks of culture. The equilibrium tensile modulus was positively correlated with total collagen (r2 = 0.47, p < 0.001) and GAG content (r2 = 0.68, p < 0.001), and these relationships were enhanced when analyzing only those matrix molecules in the CM fraction (r2 = 0.60 and 0.72 for collagen and GAG, respectively, each p < 0.001). Overall, the results of this study indicate that initial cell density has a considerable effect on the developing composition, structure, and function of alginate–chondrocyte constructs.
Resumo:
The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57-73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue-engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.
Resumo:
Protecting slow sand filters (SSFs) from high-turbidity waters by pretreatment using pebble matrix filtration (PMF) has previously been studied in the laboratory at University College London, followed by pilot field trials in Papua New Guinea and Serbia. The first full-scale PMF plant was completed at a water-treatment plant in Sri Lanka in 2008, and during its construction, problems were encountered in sourcing the required size of pebbles and sand as filter media. Because sourcing of uniform-sized pebbles may be problematic in many countries, the performance of alternative media has been investigated for the sustainability of the PMF system. Hand-formed clay balls made at a 100-yearold brick factory in the United Kingdom appear to have satisfied the role of pebbles, and a laboratory filter column was operated by using these clay balls together with recycled crushed glass as an alternative to sand media in the PMF. Results showed that in countries where uniform-sized pebbles are difficult to obtain, clay balls are an effective and feasible alternative to natural pebbles. Also, recycled crushed glass performed as well as or better than silica sand as an alternative fine media in the clarification process, although cleaning by drainage was more effective with sand media. In the tested filtration velocity range of ð0:72–1:33Þ m=h and inlet turbidity range of (78–589) NTU, both sand and glass produced above 95% removal efficiencies. The head loss development during clogging was about 30% higher in sand than in glass media.