370 resultados para Complex reality
Resumo:
The use of technology for purposes such as communication and document management has become essential to legal practice with practitioners and courts increasingly relying on various forms of technology. Accordingly, legal practitioners need to be able to understand, communicate with, and persuade their audience using this technology. Technology skills are therefore an essential and integral part of undergraduate legal education, and given the widening participation agenda in Australia and consequent increasing diversity of law students, it must also be available to all students. To neglect this most crucial part of modern legal education is to fail in a fundamental aspect of a University’s obligation not just to its students, but ultimately to our students’ potential employers and their future clients. This paper will consider how law schools can facilitate the development of technology skills by using technology to facilitate mooting in settings that replicate legal practice. In order to assess the facilities at the disposal of universities, the authors surveyed the law schools in Australia about their equipment in and use of electronic moot court rooms. The authors also conducted and evaluated an internal mooting competition using Elluminate, an online communication platform available to students through Blackboard. Students were able to participate wherever they were located without the need to attend a moot court room. The results of the survey and evaluation of the Elluminate competition will be discussed. The paper will conclude that while it is essential to teach technology skills as part of legal education, it is important that the benefits and importance of using technology be made clear in order for it to be accepted and embraced by the students. Technology must also be available to all students considering the widening participation in higher education and consequent increasing diversity of law students.
Resumo:
Mismanagement of large-scale, complex projects has resulted in spectacular failures, cost overruns, time blowouts, and stakeholder dissatisfaction. We focus discussion on the interaction of key management and leadership attributes which facilitate leaders’ adaptive behaviors. These behaviors should in turn influence adaptive team member behavior, stakeholder engagement and successful project outcomes, outputs and impacts. An understanding of this type of management will benefit from a perspective based in managerial and organizational cognition. The research question we explore is whether successful leaders of large-scale complex projects have an internal process leading to a display of administrative, adaptive, and enabling behaviors that foster adaptive processes and enabling behaviors within their teams and with external stakeholders. At the core of the model we propose interactions of key attributes, namely cognitive flexibility, affect, and emotional intelligence. The result of these cognitive-affective attribute interactions is leadership leading to enhanced likelihood of complex project success.
Resumo:
Queensland's new State Planning Policy for Coastal Protection, released in March and approved in April 2011 as part of the Queensland Coastal Plan, stipulates that local governments prepare and implement adaptation strategies for built up areas projected to be subject to coastal hazards between present day and 2100. Urban localities within the delineated coastal high hazard zone (as determined by models incorporating a 0.8 meter rise in sea level and a 10% increase in the maximum cyclone activity) will be required to re-evaluate their plans to accommodate growth, revising land use plans to minimise impacts of anticipated erosion and flooding on developed areas and infrastructure. While implementation of such strategies would aid in avoidance or minimisation of risk exposure, communities are likely to face significant challenges in such implementation, especially as development in Queensland is so intensely focussed upon its coasts with these new policies directing development away from highly desirable waterfront land. This paper examines models of planning theory to understand how we plan when faced with technically complex problems towards formulation of a framework for evaluating and improving practice.
Resumo:
This paper presents a “research frame” which we have found useful in analyzing complex socio- technical situations. The research frame is based on aspects of actor-network theory: “interressment”, “enrollment”, “points of passage” and the “trial of strength”. Each of these aspects are described in turn, making clear their purpose in the overall research frame. Having established the research frame it is used to analyse two examples. First, the use of speech recognition technology is examined in two different contexts, showing how to apply the frame to compare and contrast current situations. Next, a current medical consultation context is described and the research frame is used to consider how it could change with innovative technology. In both examples, the research frame shows that the use of an artefact or technology must be considered together with the context in which it is used.
Resumo:
This paper presents an experiment designed to investigate if redundancy in an interface has any impact on the use of complex interfaces by older people and people with low prior-experience with technology. The important findings of this study were that older people (65+ years) completed the tasks on the Words only based interface faster than on Redundant (text and symbols) interface. The rest of the participants completed tasks significantly faster on the Redundant interface. From a cognitive processing perspective, sustained attention (one of the functions of Central Executive) has emerged as one of the important factors in completing tasks on complex interfaces faster and with fewer of errors.
Resumo:
Smut fungi are important pathogens of grasses, including the cultivated crops maize, sorghum and sugarcane. Typically, smut fungi infect the inflorescence of their host plants. Three genera of smut fungi (Ustilago, Sporisorium and Macalpinomyces) form a complex with overlapping morphological characters, making species placement problematic. For example, the newly described Macalpinomyces mackinlayi possesses a combination of morphological characters such that it cannot be unambiguously accommodated in any of the three genera. Previous attempts to define Ustilago, Sporisorium and Macalpinomyces using morphology and molecular phylogenetics have highlighted the polyphyletic nature of the genera, but have failed to produce a satisfactory taxonomic resolution. A detailed systematic study of 137 smut species in the Ustilago-Sporisorium- Macalpinomyces complex was completed in the current work. Morphological and DNA sequence data from five loci were assessed with maximum likelihood and Bayesian inference to reconstruct a phylogeny of the complex. The phylogenetic hypotheses generated were used to identify morphological synapomorphies, some of which had previously been dismissed as a useful way to delimit the complex. These synapomorphic characters are the basis for a revised taxonomic classification of the Ustilago-Sporisorium-Macalpinomyces complex, which takes into account their morphological diversity and coevolution with their grass hosts. The new classification is based on a redescription of the type genus Sporisorium, and the establishment of four genera, described from newly recognised monophyletic groups, to accommodate species expelled from Sporisorium. Over 150 taxonomic combinations have been proposed as an outcome of this investigation, which makes a rigorous and objective contribution to the fungal systematics of these important plant pathogens.
Resumo:
Modelling an environmental process involves creating a model structure and parameterising the model with appropriate values to accurately represent the process. Determining accurate parameter values for environmental systems can be challenging. Existing methods for parameter estimation typically make assumptions regarding the form of the Likelihood, and will often ignore any uncertainty around estimated values. This can be problematic, however, particularly in complex problems where Likelihoods may be intractable. In this paper we demonstrate an Approximate Bayesian Computational method for the estimation of parameters of a stochastic CA. We use as an example a CA constructed to simulate a range expansion such as might occur after a biological invasion, making parameter estimates using only count data such as could be gathered from field observations. We demonstrate ABC is a highly useful method for parameter estimation, with accurate estimates of parameters that are important for the management of invasive species such as the intrinsic rate of increase and the point in a landscape where a species has invaded. We also show that the method is capable of estimating the probability of long distance dispersal, a characteristic of biological invasions that is very influential in determining spread rates but has until now proved difficult to estimate accurately.
Resumo:
The research objectives of this thesis were to contribute to Bayesian statistical methodology by contributing to risk assessment statistical methodology, and to spatial and spatio-temporal methodology, by modelling error structures using complex hierarchical models. Specifically, I hoped to consider two applied areas, and use these applications as a springboard for developing new statistical methods as well as undertaking analyses which might give answers to particular applied questions. Thus, this thesis considers a series of models, firstly in the context of risk assessments for recycled water, and secondly in the context of water usage by crops. The research objective was to model error structures using hierarchical models in two problems, namely risk assessment analyses for wastewater, and secondly, in a four dimensional dataset, assessing differences between cropping systems over time and over three spatial dimensions. The aim was to use the simplicity and insight afforded by Bayesian networks to develop appropriate models for risk scenarios, and again to use Bayesian hierarchical models to explore the necessarily complex modelling of four dimensional agricultural data. The specific objectives of the research were to develop a method for the calculation of credible intervals for the point estimates of Bayesian networks; to develop a model structure to incorporate all the experimental uncertainty associated with various constants thereby allowing the calculation of more credible credible intervals for a risk assessment; to model a single day’s data from the agricultural dataset which satisfactorily captured the complexities of the data; to build a model for several days’ data, in order to consider how the full data might be modelled; and finally to build a model for the full four dimensional dataset and to consider the timevarying nature of the contrast of interest, having satisfactorily accounted for possible spatial and temporal autocorrelations. This work forms five papers, two of which have been published, with two submitted, and the final paper still in draft. The first two objectives were met by recasting the risk assessments as directed, acyclic graphs (DAGs). In the first case, we elicited uncertainty for the conditional probabilities needed by the Bayesian net, incorporated these into a corresponding DAG, and used Markov chain Monte Carlo (MCMC) to find credible intervals, for all the scenarios and outcomes of interest. In the second case, we incorporated the experimental data underlying the risk assessment constants into the DAG, and also treated some of that data as needing to be modelled as an ‘errors-invariables’ problem [Fuller, 1987]. This illustrated a simple method for the incorporation of experimental error into risk assessments. In considering one day of the three-dimensional agricultural data, it became clear that geostatistical models or conditional autoregressive (CAR) models over the three dimensions were not the best way to approach the data. Instead CAR models are used with neighbours only in the same depth layer. This gave flexibility to the model, allowing both the spatially structured and non-structured variances to differ at all depths. We call this model the CAR layered model. Given the experimental design, the fixed part of the model could have been modelled as a set of means by treatment and by depth, but doing so allows little insight into how the treatment effects vary with depth. Hence, a number of essentially non-parametric approaches were taken to see the effects of depth on treatment, with the model of choice incorporating an errors-in-variables approach for depth in addition to a non-parametric smooth. The statistical contribution here was the introduction of the CAR layered model, the applied contribution the analysis of moisture over depth and estimation of the contrast of interest together with its credible intervals. These models were fitted using WinBUGS [Lunn et al., 2000]. The work in the fifth paper deals with the fact that with large datasets, the use of WinBUGS becomes more problematic because of its highly correlated term by term updating. In this work, we introduce a Gibbs sampler with block updating for the CAR layered model. The Gibbs sampler was implemented by Chris Strickland using pyMCMC [Strickland, 2010]. This framework is then used to consider five days data, and we show that moisture in the soil for all the various treatments reaches levels particular to each treatment at a depth of 200 cm and thereafter stays constant, albeit with increasing variances with depth. In an analysis across three spatial dimensions and across time, there are many interactions of time and the spatial dimensions to be considered. Hence, we chose to use a daily model and to repeat the analysis at all time points, effectively creating an interaction model of time by the daily model. Such an approach allows great flexibility. However, this approach does not allow insight into the way in which the parameter of interest varies over time. Hence, a two-stage approach was also used, with estimates from the first-stage being analysed as a set of time series. We see this spatio-temporal interaction model as being a useful approach to data measured across three spatial dimensions and time, since it does not assume additivity of the random spatial or temporal effects.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by continuing education as usual (Katehi, Pearson, & Feder, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualisation. These technologies have led to significant changes in the forms of mathematical and scientific thinking that are required beyond the classroom. Modelling, in its various forms, can develop and broaden children’s mathematical and scientific thinking beyond the standard curriculum. This paper first considers future competencies in the mathematical sciences within an increasingly complex world. Next, consideration is given to interdisciplinary problem solving and models and modelling. Examples of complex, interdisciplinary modelling activities across grades are presented, with data modelling in 1st grade, model-eliciting in 4th grade, and engineering-based modelling in 7th-9th grades.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by “continuing education as usual” (The National Academies, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualization. These technologies have led to significant changes in the forms of mathematical thinking that are required beyond the classroom. This paper argues for the need to incorporate future-oriented understandings and competencies within the mathematics curriculum, through intellectually stimulating activities that draw upon multidisciplinary content and contexts. The paper also argues for greater recognition of children’s learning potential, as increasingly complex learners capable of dealing with cognitively demanding tasks.
Resumo:
There is unprecedented worldwide demand for mathematical solutions to complex problems. That demand has generated a further call to update mathematics education in a way that develops students’ abilities to deal with complex systems.
Resumo:
This paper discusses exploratory research to identify the reported leadership challenges faced by leaders in the public sector in Australia and what specific leadership practices they engage in to deal with these challenges. Emerging is a sense that leadership in these complex work environments is not about controlling or mandating action but about engaging in conversation, building relationships and empowering staff to engage in innovative ways to solve complex problems. In addition leaders provide a strong sense of purpose and identity to guide behaviour and decisions to overcome being overwhelmed by the sheer volume of demands in a unpredictable and often unsupportive environment. Questions are raised as to the core competencies leaders need to develop to drive and underpin these leadership practices and the implications this has for the focus on future leadership development programmes. The possible direction of a future research programme will be put forward for further discussion.
Resumo:
This paper investigates the use of visual artifacts to represent a complex adaptive system (CAS). The integrated master schedule (IMS) is one of those visuals widely used in complex projects for scheduling, budgeting, and project management. In this paper, we discuss how the IMS outperforms the traditional timelines and acts as a ‘multi-level and poly-temporal boundary object’ that visually represents the CAS. We report the findings of a case study project on the way the IMS mapped interactions, interdependencies, constraints and fractal patterns in a complex project. Finally, we discuss how the IMS was utilised as a complex boundary object by eliciting commitment and development of shared mental models, and facilitating negotiation through the layers of multiple interpretations from stakeholders.