329 resultados para Collectivité viable


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis develops a detailed conceptual design method and a system software architecture defined with a parametric and generative evolutionary design system to support an integrated interdisciplinary building design approach. The research recognises the need to shift design efforts toward the earliest phases of the design process to support crucial design decisions that have a substantial cost implication on the overall project budget. The overall motivation of the research is to improve the quality of designs produced at the author's employer, the General Directorate of Major Works (GDMW) of the Saudi Arabian Armed Forces. GDMW produces many buildings that have standard requirements, across a wide range of environmental and social circumstances. A rapid means of customising designs for local circumstances would have significant benefits. The research considers the use of evolutionary genetic algorithms in the design process and the ability to generate and assess a wider range of potential design solutions than a human could manage. This wider ranging assessment, during the early stages of the design process, means that the generated solutions will be more appropriate for the defined design problem. The research work proposes a design method and system that promotes a collaborative relationship between human creativity and the computer capability. The tectonic design approach is adopted as a process oriented design that values the process of design as much as the product. The aim is to connect the evolutionary systems to performance assessment applications, which are used as prioritised fitness functions. This will produce design solutions that respond to their environmental and function requirements. This integrated, interdisciplinary approach to design will produce solutions through a design process that considers and balances the requirements of all aspects of the design. Since this thesis covers a wide area of research material, 'methodological pluralism' approach was used, incorporating both prescriptive and descriptive research methods. Multiple models of research were combined and the overall research was undertaken following three main stages, conceptualisation, developmental and evaluation. The first two stages lay the foundations for the specification of the proposed system where key aspects of the system that have not previously been proven in the literature, were implemented to test the feasibility of the system. As a result of combining the existing knowledge in the area with the newlyverified key aspects of the proposed system, this research can form the base for a future software development project. The evaluation stage, which includes building the prototype system to test and evaluate the system performance based on the criteria defined in the earlier stage, is not within the scope this thesis. The research results in a conceptual design method and a proposed system software architecture. The proposed system is called the 'Hierarchical Evolutionary Algorithmic Design (HEAD) System'. The HEAD system has shown to be feasible through the initial illustrative paper-based simulation. The HEAD system consists of the two main components - 'Design Schema' and the 'Synthesis Algorithms'. The HEAD system reflects the major research contribution in the way it is conceptualised, while secondary contributions are achieved within the system components. The design schema provides constraints on the generation of designs, thus enabling the designer to create a wide range of potential designs that can then be analysed for desirable characteristics. The design schema supports the digital representation of the human creativity of designers into a dynamic design framework that can be encoded and then executed through the use of evolutionary genetic algorithms. The design schema incorporates 2D and 3D geometry and graph theory for space layout planning and building formation using the Lowest Common Design Denominator (LCDD) of a parameterised 2D module and a 3D structural module. This provides a bridge between the standard adjacency requirements and the evolutionary system. The use of graphs as an input to the evolutionary algorithm supports the introduction of constraints in a way that is not supported by standard evolutionary techniques. The process of design synthesis is guided as a higher level description of the building that supports geometrical constraints. The Synthesis Algorithms component analyses designs at four levels, 'Room', 'Layout', 'Building' and 'Optimisation'. At each level multiple fitness functions are embedded into the genetic algorithm to target the specific requirements of the relevant decomposed part of the design problem. Decomposing the design problem to allow for the design requirements of each level to be dealt with separately and then reassembling them in a bottom up approach reduces the generation of non-viable solutions through constraining the options available at the next higher level. The iterative approach, in exploring the range of design solutions through modification of the design schema as the understanding of the design problem improves, assists in identifying conflicts in the design requirements. Additionally, the hierarchical set-up allows the embedding of multiple fitness functions into the genetic algorithm, each relevant to a specific level. This supports an integrated multi-level, multi-disciplinary approach. The HEAD system promotes a collaborative relationship between human creativity and the computer capability. The design schema component, as the input to the procedural algorithms, enables the encoding of certain aspects of the designer's subjective creativity. By focusing on finding solutions for the relevant sub-problems at the appropriate levels of detail, the hierarchical nature of the system assist in the design decision-making process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To achieve the ultimate goal of periodontal tissue engineering, it is of great importance to develop bioactive scaffolds which could stimulate the osteogenic/cementogenic differentiation of periodontal ligament cells (PDLCs) for the favorable regeneration of alveolar bone, root cementum, and periodontal ligament. Strontium (Sr) and Sr-containing biomaterials have been found to induce osteoblast activity. However, there is no systematic report about the interaction between Sr or Sr-containing biomaterials and PDLCs for periodontal tissue engineering. The aims of this study were to prepare Sr-containing mesoporous bioactive glass (Sr-MBG) scaffolds and investigate whether the addition of Sr could stimulate the osteogenic/cementogenic differentiation of PDLCs in tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Sr-MBG scaffolds were characterized. The proliferation, alkaline phosphatase (ALP) activity and osteogenesis/cementogenesis-related gene expression (ALP, Runx2, Col I, OPN and CEMP1) of PDLCs on different kinds of Sr-MBG scaffolds were systematically investigated. The results show that Sr plays an important role in influencing the mesoporous structure of MBG scaffolds in which high contents of Sr decreased the well-ordered mesopores as well as their surface area/pore volume. Sr2+ ions could be released from Sr-MBG scaffolds in a controlled way. The incorporation of Sr into MBG scaffolds has significantly stimulated ALP activity and osteogenesis/cementogenesis-related gene expression of PDLCs. Furthermore, Sr-MBG scaffolds in simulated body fluids environment still maintained excellent apatite-mineralization ability. The study suggests that the incorporation of Sr into MBG scaffolds is a viable way to stimulate the biological response of PDLCs. Sr-MBG scaffolds are a promising bioactive material for periodontal tissue engineering application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gaining a competitive edge in the area of the engagement, success and retention of commencing students is a significant issue in higher education, made more so currently because of the considerable and increasing pressure on teaching and learning from the new standards framework and performance funding. This paper introduces the concept of maturity models (MMs) and their application to assessing the capability of higher education institutions (HEIs) to address student engagement, success and retention (SESR). A concise description of the features of maturity models is presented with reference to an SESR-MM currently being developed. The SESR-MM is proposed as a viable instrument for assisting HEIs in the management and improvement of their SESR activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Learning Outcome: Gain knowledge in the area of dietetic training in Australia and the benefits of collaborative partnerships between government and universities to achieve improvements in dietetic service delivery, evidenced based practice, and student placements. Prisoners have high rates of chronic disease, however dietetic services and research in this sector is limited. Securing high quality professional practice placements for dietetic training in Australia is competitive, and prisons provide exciting opportunities. Queensland University of Technology (QUT) has a unique twenty year partnership with Queensland Corrective Services (QCS) with a service learning model placing final year dietetic students within prisons. Building on this partnership, in 2007 a new joint position was funded to establish dietetic services to over 5500 prisoners and support viable best practice dietetic education. Evaluation of the past three years of this partnership has shown an expansion of QUT student placements in Queensland prisons, with a third of final year students each undertaking 120 hours of foodservice management practicum. Student evaluations of placement over this period are much higher than the University average. Through the joint position student projects have been targeted on strategic areas to support nutrition and dietetic policy and practice. Projects have been broadened from menu reviews to more comprehensive quality improvement and dietetic research activities, with all student learning activities transferrable to other foodservice settings. Student practice in the prisons has been extended beyond foodservice management to include group education and dietetic counseling. For QCS, student placements have equated to close to a full-time dietitian position, with nutrition policy now being implemented as an outcome of this support. This innovative partnership has achieved a sustainable student placement model, supported research, whilst delivering dietetic services to a difficult to access group. Funding Disclosure: None

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainability, smartness and safety are three sole components of a modern transportation system. The objective of this study is to introduce a modern transportation system in the light of a 3‘S’ approach: sustainable, smart and safe. In particular this paper studies the transportation system of Singapore to address how this system is progressing in this three-pronged approach towards a modern transportation system. While sustainability targets environmental justice and social equity without compromising economical efficiency, smartness incorporates qualities like automated sensing, processing and decision making, and action-taking into the transportation system. Since a system cannot be viable without being safe, the safety of the modern transportation system aims minimizing crash risks of all users including motorists, motorcyclists, pedestrians, and bicyclists. Various policy implications and technology applications inside the transportation system of Singapore are discussed to illustrate a modern transportation system within the framework of the 3‘S’ model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents two novel concepts to enhance the accuracy of damage detection using the Modal Strain Energy based Damage Index (MSEDI) with the presence of noise in the mode shape data. Firstly, the paper presents a sequential curve fitting technique that reduces the effect of noise on the calculation process of the MSEDI, more effectively than the two commonly used curve fitting techniques; namely, polynomial and Fourier’s series. Secondly, a probability based Generalized Damage Localization Index (GDLI) is proposed as a viable improvement to the damage detection process. The study uses a validated ABAQUS finite-element model of a reinforced concrete beam to obtain mode shape data in the undamaged and damaged states. Noise is simulated by adding three levels of random noise (1%, 3%, and 5%) to the mode shape data. Results show that damage detection is enhanced with increased number of modes and samples used with the GDLI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strongly progressive surveying and mapping industry depends on a shared understanding of the industry as it exists, some shared vision or imagination of what the industry might become, and some shared action plan capable of bringing about a realisation of that vision. The emphasis on sharing implies a need for consensus reached through widespread discussion and mutual understanding. Unless this occurs, concerted action is unlikely. A more likely outcome is that industry representatives will negate each other's efforts in their separate bids for progress. The process of bringing about consensual viewpoints is essentially one of establishing an industry identity. Establishing the industry's identity and purpose is a prerequisite for rational development of the industry's education and training, its promotion and marketing, and operational research that can deal .with industry potential and efficiency. This paper interprets evolutionary developments occurring within Queensland's surveying and mapping industry within a framework that sets out logical requirements for a viable industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid urbanisation and resulting continuous increase in traffic has been recognised as key factors in the contribution of increased pollutant loads to urban stormwater and in turn to receiving waters. Urbanisation primarily increases anthropogenic activities and the percentage of impervious surfaces in urban areas. These processes are collectively responsible for urban stormwater pollution. In this regard, urban traffic and land use related activities have been recognised as the primary pollutant sources. This is primarily due to the generation of a range of key pollutants such as solids, heavy metals and PAHs. Appropriate treatment system design is the most viable approach to mitigate stormwater pollution. However, limited understanding of the pollutant process and transport pathways constrains effective treatment design. This highlights necessity for the detailed understanding of traffic and other land use related pollutants processes and pathways in relation to urban stormwater pollution. This study has created new knowledge in relation to pollutant processes and transport pathways encompassing atmospheric pollutants, atmospheric deposition and build-up on ground surfaces of traffic generated key pollutants. The research study was primarily based on in-depth experimental investigations. This thesis describes the extensive knowledge created relating to the processes of atmospheric pollutant build-up, atmospheric deposition and road surface build-up and establishing their relationships as a chain of processes. The analysis of atmospheric deposition revealed that both traffic and land use related sources contribute total suspended particulate matter (TSP) to the atmosphere. Traffic sources become dominant during weekdays whereas land use related sources become dominant during weekends due to the reduction in traffic sources. The analysis further concluded that atmospheric TSP, polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) concentrations are highly influenced by total average daily heavy duty traffic, traffic congestion and the fraction of commercial and industrial land uses. A set of mathematical equation were developed to predict TSP, PAHs and HMs concentrations in the atmosphere based on the influential traffic and land use related parameters. Dry deposition samples were collected for different antecedent dry days and wet deposition samples were collected immediately after rainfall events. The dry deposition was found to increase with the antecedent dry days and consisted of relatively coarser particles (greater than 1.4 ìm) when compared to wet deposition. The wet deposition showed a strong affinity to rainfall depth, but was not related to the antecedent dry period. It was also found that smaller size particles (less than 1.4 ìm) travel much longer distances from the source and deposit mainly with the wet deposition. Pollutants in wet deposition are less sensitive to the source characteristics compared to dry deposition. Atmospheric deposition of HMs is not directly influenced by land use but rather by proximity to high emission sources such as highways. Therefore, it is important to consider atmospheric deposition as a key pollutant source to urban stormwater in the vicinity of these types of sources. Build-up was analysed for five different particle size fractions, namely, <1 ìm, 1-75 ìm, 75-150 ìm, 150-300 ìm and >300 ìm for solids, PAHs and HMs. The outcomes of the study indicated that PAHs and HMs in the <75 ìm size fraction are generated mainly by traffic related activities whereas the > 150 ìm size fraction is generated by both traffic and land use related sources. Atmospheric deposition is an important source for HMs build-up on roads, whereas the contribution of PAHs from atmospheric sources is limited. A comprehensive approach was developed to predict traffic and other land use related pollutants in urban stormwater based on traffic and other land use characteristics. This approach primarily included the development of a set of mathematical equations to predict traffic generated pollutants by linking traffic and land use characteristics to stormwater quality through mathematical modelling. The outcomes of this research will contribute to the design of appropriate treatment systems to safeguard urban receiving water quality for future traffic growth scenarios. The „real world. application of knowledge generated was demonstrated through mathematical modelling of solids in urban stormwater, accounting for the variability in traffic and land use characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the context of increasing demand for potable water and the depletion of water resources, stormwater is a logical alternative. However, stormwater contains pollutants, among which metals are of particular interest due to their toxicity and persistence in the environment. Hence, it is imperative to remove toxic metals in stormwater to the levels prescribed by drinking water guidelines for potable use. Consequently, various techniques have been proposed, among which sorption using low cost sorbents is economically viable and environmentally benign in comparison to other techniques. However, sorbents show affinity towards certain toxic metals, which results in poor removal of other toxic metals. It was hypothesised in this study that a mixture of sorbents that have different metal affinity patterns can be used for the efficient removal of a range of toxic metals commonly found in stormwater. The performance of six sorbents in the sorption of Al, Cr, Cu, Pb, Ni, Zn and Cd, which are the toxic metals commonly found in urban stormwater, was investigated to select suitable sorbents for creating the mixtures. For this purpose, a multi criteria analytical protocol was developed using the decision making methods: PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) and GAIA (Graphical Analysis for Interactive Assistance). Zeolite and seaweed were selected for the creation of trial mixtures based on their metal affinity pattern and the performance on predetermined selection criteria. The metal sorption mechanisms employed by seaweed and zeolite were defined using kinetics, isotherm and thermodynamics parameters, which were determined using the batch sorption experiments. Additionally, the kinetics rate-limiting steps were identified using an innovative approach using GAIA and Spearman correlation techniques developed as part of the study, to overcome the limitation in conventional graphical methods in predicting the degree of contribution of each kinetics step in limiting the overall metal removal rate. The sorption kinetics of zeolite was found to be primarily limited by intraparticle diffusion followed by the sorption reaction steps, which were governed mainly by the hydrated ionic diameter of metals. The isotherm study indicated that the metal sorption mechanism of zeolite was primarily of a physical nature. The thermodynamics study confirmed that the energetically favourable nature of sorption increased in the order of Zn < Cu < Cd < Ni < Pb < Cr < Al, which is in agreement with metal sorption affinity of zeolite. Hence, sorption thermodynamics has an influence on the metal sorption affinity of zeolite. On the other hand, the primary kinetics rate-limiting step of seaweed was the sorption reaction process followed by intraparticle diffusion. The boundary layer diffusion was also found to limit the metal sorption kinetics at low concentration. According to the sorption isotherm study, Cd, Pb, Cr and Al were sorbed by seaweed via ion exchange, whilst sorption of Ni occurred via physisorption. Furthermore, ionic bonding is responsible for the sorption of Zn. The thermodynamics study confirmed that sorption by seaweed was energetically favourable in the order of Zn < Cu < Cd < Cr . Al < Pb < Ni. However, this did not agree with the affinity series derived for seaweed suggesting a limited influence of sorption thermodynamics on metal affinity for seaweed. The investigation of zeolite-seaweed mixtures indicated that mixing sorbents have an effect on the kinetics rates and the sorption affinity. Additionally, the theoretical relationships were derived to predict the boundary layer diffusion rate, intraparticle diffusion rate, the sorption reaction rate and the enthalpy of mixtures based on that of individual sorbents. In general, low coefficient of determination (R2) for the relationships between theoretical and experimental data indicated that the relationships were not statistically significant. This was attributed to the heterogeneity of the properties of sorbents. Nevertheless, in relative terms, the intraparticle diffusion rate, sorption reaction rate and enthalpy of sorption had higher R2 values than the boundary layer diffusion rate suggesting that there was some relationship between the former set of parameters of mixtures and that of sorbents. The mixture, which contained 80% of zeolite and 20% of seaweed, showed similar affinity for the sorption of Cu, Ni, Cd, Cr and Al, which was attributed to approximately similar sorption enthalpy of the metal ions. Therefore, it was concluded that the seaweed-zeolite mixture can be used to obtain the same affinity for various metals present in a multi metal system provided the metal ions have similar enthalpy during sorption by the mixture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australia requires decisive action on climate change and issues of sustainability. The Urban Informatics Research Lab has been funded by the Queensland State Government to conduct a three year study (2009 – 2011) exploring ways to support Queensland residents in making more sustainable consumer and lifestyle choices. We conduct user-centred design research that inform the development of real-time, mobile, locational, networked information interfaces, feedback mechanisms and persuasive and motivational approaches that in turn assist in-situ decision making and environmental awareness in everyday settings. The study aims to deliver usable and useful prototypes offering individual and collective visualisations of ecological impact and opportunities for engagement and collaboration in order to foster a participatory and sustainable culture of life in Australia. Raising people’s awareness with environmental data and educational information does not necessarily trigger sufficient motivation to change their habits towards a more environmentally friendly and sustainable lifestyle. Our research seeks to develop a better understanding how to go beyond just informing and into motivating and encouraging action and change. Drawing on participatory culture, ubiquitous computing, and real-time information, the study delivers research that leads to viable new design approaches and information interfaces which will strengthen Australia’s position to meet the targets of the Clean Energy Future strategy, and contribute to the sustainability of a low-carbon future in Australia. As part of this program of research, the Urban Informatics Research Lab has been invited to partner with GV Community Energy Pty Ltd on a project funded by the Victorian Government Sustainability Fund. This feasibility report specifically looks at the challenges and opportunities of energy monitoring in households in Victoria that include a PV solar installation. The report is structured into two parts: In Part 1, we first review a range of energy monitoring solutions, both stand-alone and internet-enabled. This section primarily focusses on the technical capacilities. However, in order to understand this information and make an informed decision, it is crucial to understand the basic principles and limitations of energy monitoring as well as the opportunities and challenges of a networked approach towards energy monitoring which are discussed in Section 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a need for an accurate real-time quantitative system that would enhance decision-making in the treatment of osteoarthritis. To achieve this objective, significant research is required that will enable articular cartilage properties to be measured and categorized for health and functionality without the need for laboratory tests involving biopsies for pathological evaluation. Such a system would provide the capability of access to the internal condition of the cartilage matrix and thus extend the vision-based arthroscopy that is currently used beyond the subjective evaluation of surgeons. The system required must be able to non-destructively probe the entire thickness of the cartilage and its immediate subchondral bone layer. In this thesis, near infrared spectroscopy is investigated for the purpose mentioned above. The aim is to relate it to the structure and load bearing properties of the cartilage matrix to the near infrared absorption spectrum and establish functional relationships that will provide objective, quantitative and repeatable categorization of cartilage condition outside the area of visible degradation in a joint. Based on results from traditional mechanical testing, their innovative interpretation and relationship with spectroscopic data, new parameters were developed. These were then evaluated for their consistency in discriminating between healthy viable and degraded cartilage. The mechanical and physico-chemical properties were related to specific regions of the near infrared absorption spectrum that were identified as part of the research conducted for this thesis. The relationships between the tissue's near infrared spectral response and the new parameters were modeled using multivariate statistical techniques based on partial least squares regression (PLSR). With significantly high levels of statistical correlation, the modeled relationships were demonstrated to possess considerable potential in predicting the properties of unknown tissue samples in a quick and non-destructive manner. In order to adapt near infrared spectroscopy for clinical applications, a balance between probe diameter and the number of active transmit-receive optic fibres must be optimized. This was achieved in the course of this research, resulting in an optimal probe configuration that could be adapted for joint tissue evaluation. Furthermore, as a proof-of-concept, a protocol for obtaining the new parameters from the near infrared absorption spectra of cartilage was developed and implemented in a graphical user interface (GUI)-based software, and used to assess cartilage-on-bone samples in vitro. This conceptual implementation has been demonstrated, in part by the individual parametric relationship with the near infrared absorption spectrum, the capacity of the proposed system to facilitate real-time, non-destructive evaluation of cartilage matrix integrity. In summary, the potential of the optical near infrared spectroscopy for evaluating articular cartilage and bone laminate has been demonstrated in this thesis. The approach could have a spin-off for other soft tissues and organs of the body. It builds on the earlier work of the group at QUT, enhancing the near infrared component of the ongoing research on developing a tool for cartilage evaluation that goes beyond visual and subjective methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Divalent cobalt ions (Co2+) have been shown to possess the capacity to induce angiogenesis by activating hypoxia inducible factor-1α (HIF-1α) and subsequently inducing the production of vascular endothelial growth factor (VEGF). However, there are few reports about Co-containing biomaterials for inducing in vitro angiogenesis. The aim of the present work was to prepare Co-containing β-tricalcium phosphate (Co-TCP) ceramics with different contents of calcium substituted by cobalt (0, 2, 5 mol%) and to investigate the effect of Co substitution on their physicochemical and biological properties. Co-TCP powders were synthesized by a chemistry precipitation method and Co-TCP ceramics were prepared by sintering the powder compacts. The effect of Co substitution on phase transition and the sintering property of the β-TCP ceramics was investigated. The proliferation and VEGF expression of human bone marrow mesenchymal stem cells (HBMSCs) cultured with both powder extracts and ceramic discs of Co-TCP was further evaluated. The in vitro angiogenesis was evaluated by the tube-like structure formation of human umbilical vein endothelial cells (HUVECs) cultured on ECMatrix™ in the presence of powder extracts. The results showed that Co substitution suppressed the phase transition from β- to α-TCP. Both the powder extracts and ceramic discs of Co-TCP had generally good cytocompatibility to support HBMSC growth. Importantly, the incorporation of Co into β-TCP greatly stimulated VEGF expression of HBMSCs and Co-TCP showed a significant enhancement of network structure formation of HUVECs compared with pure TCP. Our results suggested that the incorporation of Co into bioceramics is a potential viable way to enhance angiogenic properties of biomaterials. Co-TCP bioceramics may be used for bone tissue regeneration with improved angiogenic capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Building prefabrication is known as Industrialised Building Systems (IBS) in Malaysia. This construction method possesses unique characteristics that are central to sustainable construction. For example, offsite construction enables efficient management of construction wastage by identifying major causes of waste arising during both the design and construction stages. These causes may then be eliminated by the improvement process in IBS component's manufacturing. However, current decisions on using IBS are typically financial driven and hinder the wider ranged adoption. In addition, current IBS misconceptions and the failure of rating schemes in evaluating the sustainability of IBS affect its implementation. A new approach is required to provide better understanding on the sustainability potential of IBS among stakeholders. Such approach should also help project the outcomes of each levels of decision-making to respond to social, economy and environmental challenges. This paper presents interim findings of research aimed at developing a framework for sustainable IBS development and suggests a more holistic approach to achieve sustainability. A framework of embedding sustainability factors is considered in three main phases of IBS construction; 1) Pre-construction, 2) Construction and 3) Post-construction phase. SWOT analysis was used to evaluate the strengths, weaknesses, opportunities and threats involved in the IBS implementations. The action plans are formulated from the analysis of sustainable objectives. This approach will show where and how sustainability should be integrated to improve IBS construction. A mix of quantitative and qualitative methodology was used in this research to explore the potential of IBS in integrating sustainability. The tools used in the study are questionnaires and semi-structured interviews. Outcomes from these tools lead to the identification of viable approaches involving 18 critical factors to improve sustainability in IBS constructions. Finally, guidelines for decision-making are being developed to provide a useful source of information and support to mutual benefit of the stakeholders in integrating sustainability issues and concepts into IBS applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We constructed a novel autonomously replicating gene expression shuttle vector, with the aim of developing a system for transiently expressing proteins at levels useful for commercial production of vaccines and other proteins in plants. The vector, pRIC, is based on the mild strain of the geminivirus Bean yellow dwarf virus (BeYDV-m) and is replicationally released into plant cells from a recombinant Agrobacterium tumefaciens Ti plasmid. pRIC differs from most other geminivirus-based vectors in that the BeYDV replication-associated elements were included in cis rather than from a co-transfected plasmid, while the BeYDV capsid protein (CP) and movement protein (MP) genes were replaced by an antigen encoding transgene expression cassette derived from the non-replicating A. tumefaciens vector, pTRAc. We tested vector efficacy in Nicotiana benthamiana by comparing transient cytoplasmic expression between pRIC and pTRAc constructs encoding either enhanced green fluorescent protein (EGFP) or the subunit vaccine antigens, human papillomavirus subtype 16 (HPV-16) major CP L1 and human immunodeficiency virus subtype C p24 antigen. The pRIC constructs were amplified in planta by up to two orders of magnitude by replication, while 50% more HPV-16 L1 and three- to seven-fold more EGFP and HIV-1 p24 were expressed from pRIC than from pTRAc. Vector replication was shown to be correlated with increased protein expression. We anticipate that this new high-yielding plant expression vector will contribute towards the development of a viable plant production platform for vaccine candidates and other pharmaceuticals. © 2009 Blackwell Publishing Ltd.