282 resultados para Collaborative Visualisation
Resumo:
The IT systems drive the financial reporting processes in modern business environments. The result is an integrative system of initialing, authorizing, recording, and processing of financial transactions. This IT-related change inextricably links to the overall financial reporting process, requiring a deeper level of understanding and commitment. Firm’s IT governance initiatives provide this commitment by enforcing controls to IT components to ensure compliance to overall financial reporting requirements. The IT governance institute (ITGI) and other authorities have developed a number of frameworks and guidelines (e.g., COBIT) to help management in managing IT-intensive processes.
Resumo:
Identifying, modelling and documenting business processes usually requires the collaboration of many stakeholders that may be spread across companies in inter-organizational business settings. While there are many process modelling tools available, the support they provide for remote collaboration is still limited. This paper investigates the application of virtual environment and augmented reality technologies to remote business process modelling, with an aim to assisting common collaboration tasks by providing an increased sense of immersion in a shared workspace. We report on the evaluation of a prototype system with five key informants. The results indicate that this approach to business process modelling is suited to remote collaborative task settings, and stakeholders may indeed benefit from using augmented reality interfaces.
Resumo:
There is an increased interested in Uninhabited Aerial Vehicle (UAV) operations and research into advanced methods for commanding and controlling multiple heterogeneous UAVs. Research into areas of supervisory control has rapidly increased. Past research has investigated various approaches of autonomous control and operator limitation to improve mission commanders' Situation Awareness (SA) and cognitive workload. The aim of this paper is to address this challenge through a visualisation framework of UAV information constructed from Information Abstraction (IA). This paper presents the concept and process of IA, and the visualisation framework (constructed using IA), the concept associated with the Level Of Detail (LOD) indexing method, the visualisation of an example of the framework. Experiments will test the hypothesis that, the operator will be able to achieve increased SA and reduced cognitive load with the proposed framework.
Resumo:
Traditional recommendation methods offer items, that are inanimate and one way recommendation, to users. Emerging new applications such as online dating or job recruitments require reciprocal people-to-people recommendations that are animate and two-way recommendations. In this paper, we propose a reciprocal collaborative method based on the concepts of users' similarities and common neighbors. The dataset employed for the experiment is gathered from a real life online dating network. The proposed method is compared with baseline methods that use traditional collaborative algorithms. Results show the proposed method can achieve noticeably better performance than the baseline methods.
Resumo:
The Lockyer Valley in southeast Queensland, Australia, hosts an economically significant alluvial aquifer system which has been impacted by prolonged drought conditions (~1997 to ~ 2009). Throughout this time, the system was under continued groundwater extraction, resulting in severe aquifer depletion. By 2008, much of the aquifer was at <30% of storage but some relief occurred with rains in early 2009. However, between December 2010 and January 2011, most of southeast Queensland experienced unprecedented flooding, which generated significant aquifer recharge. In order to understand the spatial and temporal controls of groundwater recharge in the alluvium, a detailed 3D lithological property model of gravels, sands and clays was developed using GOCAD software. The spatial distribution of recharge throughout the catchment was assessed using hydrograph data from about 400 groundwater observation wells screened at the base of the alluvium. Water levels from these bores were integrated into a catchment-wide 3D geological model using the 3D geological modelling software GOCAD; the model highlights the complexity of recharge mechanisms. To support this analysis, groundwater tracers (e.g. major and minor ions, stable isotopes, 3H and 14C) were used as independent verification. The use of these complementary methods has allowed the identification of zones where alluvial recharge primarily occurs from stream water during episodic flood events. However, the study also demonstrates that in some sections of the alluvium, rainfall recharge and discharge from the underlying basement into the alluvium are the primary recharge mechanisms of the alluvium. This is indicated by the absence of any response to the flood, as well as the observed old radiocarbon ages and distinct basement water chemistry signatures at these locations. Within the 3D geological model, integration of water chemistry and time-series displays of water level surfaces before and after the flood suggests that the spatial variations of the flood response in the alluvium are primarily controlled by the valley morphology and lithological variations within the alluvium. The integration of time-series of groundwater level surfaces in the 3D geological model also enables the quantification of the volumetric change of groundwater stored in the unconfined sections of this alluvial aquifer during drought and following flood events. The 3D representation and analysis of hydraulic and recharge information has considerable advantages over the traditional 2D approach. For example, while many studies focus on singular aspects of catchment dynamics and groundwater-surface water interactions, the 3D approach is capable of integrating multiple types of information (topography, geological, hydraulic, water chemistry and spatial) into a single representation which provides valuable insights into the major factors controlling aquifer processes.
Resumo:
A detailed 3D lithological model framework was developed using GOCAD software to understand interactions between alluvial, volcanic and GAB aquifers and the spatial and temporal distribution of groundwater recharge to the alluvium of the Lockyer Valley. Groundwater chemistry, isotope data (H20-δ2H and δ18O , 87Sr/86Sr, 3H and 14C) and groundwater level time-series data from approximately 550 observation wells were integrated into the catchment-wide 3D model to assess the recharge processes involved. This approach enabled the identification of zones where recharge to the alluvium primarily occurs from stream water during episodic flood events. Importantly, the study also demonstrates that in some sections of the alluvium recharge is also from storm rainfall and seepage discharge from the underlying GAB aquifers. These other sources of recharge are indicated by (a) the absence of a response of groundwater levels to flooding in some areas, (b) old radiocarbon ages, and (c) distinct bedrock water chemistry and δ2H and δ18O signatures in alluvial groundwater at these locations. Integration of isotopes, water chemistry and time-series displays of groundwater levels before and after the 2010/2011 flood into the 3D model suggest that the spatial variations in the alluvial groundwater response are mostly controlled by valley morphology and lithological (i.e. permeability) variations within the alluvium. Examination of the groundwater level variations in the 3D model also enabled quantification of the volumetric change of groundwater stored in the unconfined alluvial aquifer prior to and post-flood events.
Resumo:
A review of the issues for supporting learning of power engineering in Australia is presented in this paper. The learning needs of students and the support available in blended learning and through distance educations are explored in this review. Specific software tools to assist the learning environment are appraised and the relevance for the next generation of power engineers assessed.
Resumo:
Organizations today invest in collaborative IT to engage in collaborative alliances to sustain or improve their competitive positions. Effective use of this collaborative IT in an alliance requires a deeper understanding of their governance structures. This effort is to ensure the sustainability of these alliances. Through the relational view of the firm, we suggest relational lateral IT-steering committees, relational IT operational committees, and relational IT performance management systems as IT governance structures for collaborative alliances. We then incorporate these structures, develop a model for approaches to governing collaborative IT, and evaluate the effectiveness for such governance structures in the IT-dependent alliances. We suggest that IT governance efforts of an alliance should contribute to their collaborative rent. We also suggest that the collaborative rent of an alliance would relate to the business value of its alliance partners. Field survey data containing 192 responses indicates a positive influence of the suggested IT governance efforts of the alliance on the collaborative rent of the alliance. The results also suggest a positive impact of the collaborative rent of the alliance on the business value of the alliance partners.
Resumo:
The current global economic instability and the vulnerability of small nations provide the impetus for greater integration between the countries of the South Pacific region. This exercise is critical for their survival. Past efforts of regional integration in the South Pacific have mostly failed. However, today’s IT collaborative capabilities provide the opportunity to develop a shared IT infrastructure to facilitate integration in the South Pacific. In developing an IT-backed model of regional integration, this study identifies and reports on the antecedents of the current stage for integration in the Pacific. We conducted interviews with twenty five individuals from various sectors and find that while most respondents were optimistic about the potential of IT-backed regional integration, significant challenges exists. The study identifies and discusses these challenges providing policy implications to stakeholders in the regional integration process. The findings will assist in suggesting a model of regional integration 2.0 for the Pacific region.
Resumo:
This book was written to serve two functions. First it is an exploration of what I have called Socratic pedagogy, a collaborative inquiry-based approach to teaching and learning suitable not only to formal educational settings such as the school classroom but to all educational settings. The term is intended to capture a variety of philosophical approaches to classroom practice that could broadly be described Socratic in form. The term ‘philosophy in schools’ is ambiguous and could refer to teaching university style philosophy to high school students or to the teaching of philosophy and logic or critical reasoning in senior years of high school. It is also used to describe the teaching of philosophy in schools generally. In the early and middle phases of schooling the term philosophy for children is often used. But this too is ambiguous as the name was adopted from Matthew Lipman’s Philosophy for Children curriculum that he and his colleagues at the Institute for the Advancement of Philosophy for Children developed. In Britain the term ‘philosophy with children’ is sometimes employed to mark two methods of teaching that have Socratic roots but have distinct differences, namely Philosophy for Children and Socratic Dialogue developed by Leonard Nelson. The use of the term Socratic pedagogy and its companion term Socratic classroom (to refer to the kind of classroom that employs Socratic teaching) avoids the problem of distinguishing between various approaches to philosophical inquiry in the Socratic tradition but also separates it from the ‘study of philosophy’, such as university style philosophy or other approaches which place little or no emphasis on collaborative inquiry based teaching and learning. The second function builds from the first. It is to develop an effective framework for understanding the relationship between what I call the generative, evaluative and connective aspects of communal dialogue, which I think are necessary to the Socratic notion of inquiry. In doing so it is hoped that this book offers some way to show how philosophy as inquiry can contribute to educational theory and practice, while also demonstrating how it can be an effective way to approach teaching and learning. This has meant striking a balance between speaking to philosophers and to teachers and educators together, with the view that both see the virtues of such a project. In the strictest sense this book is not philosophy of education, insofar as its chief focus is not on the analysis of concepts or formulation of definitions specific to education with the aim of formulating directives that guide educational practice. It relinquishes the role of philosopher as ‘spectator’, to one of philosopher ‘immersed in matter’ – in this case philosophical issues in education, specifically those related to philosophical inquiry, pedagogy and classroom practice. Put another way, it is a book about philosophical education.
Resumo:
Identifying, modelling and documenting business processes usually require the collaboration of many stakeholders that may be spread across companies in inter-organizational settings. While modern process modelling technologies are beginning to provide a number of features to support remote, they lack support for visual cues used in co-located collaboration. In this paper, we examine the importance of visual cues for collaboration tasks in collaborative process modelling. Based on this analysis, we present a prototype 3D virtual world process modelling tool that supports a number of visual cues to facilitate remote collaborative process model creation and validation. We then report on a preliminary analysis of the technology. In conclusion, we proceed to describe the future direction of our research with regards to the theoretical contributions expected from the evaluation of the tool.
Resumo:
Complex flow datasets are often difficult to represent in detail using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows (i.e., complex dynamics and time-dependent). In this paper, we review two popular texture-based techniques and their application to flow datasets sourced from real research projects. The texture-based techniques investigated were Line Integral Convolution (LIC), and Image-Based Flow Visualisation (IBFV). We evaluated these techniques and in this paper report on their visualisation effectiveness (when compared with traditional techniques), their ease of implementation, and their computational overhead.