366 resultados para COLLOIDAL CARBON SPHERES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C3N4) and electronically active graphene. We find an inhomogeneous planar substrate (g-C3N4) promotes electronrich and hole-rich regions, i.e., forming a well-defined electron−hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C3N4 substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C3N4 interface opens a 70 meV gap in g-C3N4-supported graphene, a feature that can potentially allow overcoming the graphene’s band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C3N4 is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C3N4 monolayer, the hybrid graphene/g-C3N4 complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on theoretical prediction, a g-C3N4@carbon metal-free oxygen reduction reaction (ORR) electrocatalyst was designed and synthesized by uniform incorporation of g-C3N4 into a mesoporous carbon to enhance the electron transfer efficiency of g-C3N4. The resulting g-C3N4@carbon composite exhibited competitive catalytic activity (11.3 mA cm–2 kinetic-limiting current density at −0.6 V) and superior methanol tolerance compared to a commercial Pt/C catalyst. Furthermore, it demonstrated significantly higher catalytic efficiency (nearly 100% of four-electron ORR process selectivity) than a Pt/C catalyst. The proposed synthesis route is facile and low-cost, providing a feasible method for the development of highly efficient electrocatalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synergistic effect of metallic couple and carbon nanotubes on Mg results in an ultrafast kinetics of hydrogenation that overcome a critical barrier of practical use of Mg as hydrogen storage materials. The ultrafast kinetics is attributed to the metal−H atomic interaction at the Mg surface and in the bulk (energy for bonding and releasing) and atomic hydrogen diffusion along the grain boundaries (aggregation of carbon nanotubes) and inside the grains. Hence, a hydrogenation mechanism is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of bare graphene nanoribbons (GNRs) was investigated by ab initio density functional theory calculations with both the local density approximation (LDA) and the generalized gradient approximation (GGA). Remarkably, two bare 8-GNRs with zigzag-shaped edges are predicted to form an (8, 8) armchair single-wall carbon nanotube (SWCNT) without any obvious activation barrier. The formation of a (10, 0) zigzag SWCNT from two bare 10-GNRs with armchair-shaped edges has activation barriers of 0.23 and 0.61 eV for using the LDA and the revised PBE exchange correlation functional, respectively, Our results suggest a possible route to control the growth of specific types SWCNT via the interaction of GNRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In March 2008, the Australian Government announced its intention to introduce a national Emissions Trading Scheme (ETS), now expected to start in 2015. This impending development provides an ideal setting to investigate the impact an ETS in Australia will have on the market valuation of Australian Securities Exchange (ASX) firms. This is the first empirical study into the pricing effects of the ETS in Australia. Primarily, we hypothesize that firm value will be negatively related to a firm's carbon intensity profile. That is, there will be a greater impact on firm value for high carbon emitters in the period prior (2007) to the introduction of the ETS, whether for reasons relating to the existence of unbooked liabilities associated with future compliance and/or abatement costs, or for reasons relating to reduced future earnings. Using a sample of 58 Australian listed firms (constrained by the current availability of emissions data) which comprise larger, more profitable and less risky listed Australian firms, we first undertake an event study focusing on five distinct information events argued to impact the probability of the proposed ETS being enacted. Here, we find direct evidence that the capital market is indeed pricing the proposed ETS. Second, using a modified version of the Ohlson (1995) valuation model, we undertake a valuation analysis designed not only to complement the event study results, but more importantly to provide insights into the capital market's assessment of the magnitude of the economic impact of the proposed ETS as reflected in market capitalization. Here, our results show that the market assesses the most carbon intensive sample firms a market value decrement relative to other sample firms of between 7% and 10% of market capitalization. Further, based on the carbon emission profile of the sample firms we imply a ‘future carbon permit price’ of between AUD$17 per tonne and AUD$26 per tonne of carbon dioxide emitted. This study is more precise than industry reports, which set a carbon price of between AUD$15 to AUD$74 per tonne.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane gas has been identified as the most destructive greenhouse gas (Liu et al., 2004). It was reported that the global warming potential of methane per molecule relative to CO2 is approximately 23 on a 100-year timescale or 62 over a 20-year period (IPCC, 2001). Methane has high C-H bond energy of about 439 kJ/mol and other higher alkanes (or saturated hydrocarbons) also have a very strong C-C and C-H bonds, thus making their molecules to have no empty orbitals of low energy or filled orbitals of high energy that could readily participate in chemical reactions as is the case with unsaturated hydrocarbons such as olefins and alkynes (Crabtree, 1994; Labinger & Bercaw, 2002)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An emerging theme for a nation transiting into a sustainable future is the provision of a low carbon (dioxide) environment. Carbon emission reduction is therefore important for the industry and community as a whole. Buildings contribute immensely to total greenhouse gas emissions, so pragmatic actions need to be taken to cut the amount of carbon emitted by the construction industry. These typically involve strategies such as energy-saving features in the design, construction and operation of building projects. However, a variety of characteristics of the markets and stakeholders involved are suppressing their development. This paper reports on a series of interviews with a variety of Hong Kong construction project participants aimed at identifying the drivers of, and obstacles to, the construction industry's attempts to reduce carbon emissions. The results confirm the main actions currently undertaken are energy efficiency enhancement, green procurement, research and development activities, waste/water management and other technical measures such as the provision of thermal insulation. The majority of the drivers are economical in nature, suggesting that financial aids, and particularly government incentives, are likely to be useful motivators. Also suggested is the increased promotion of the benefits of environmental sustainability to the wider community, in order to alert the general public to the need for reducing the amount of carbon originating from building usage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the structural and gas sensing properties of an electropolymerized, polyaniline (PANI)/multiwall carbon nanotube (MWNT) composite based surface acoustic wave (SAW) sensor are reported. Thin films made of PANI nanofibers were deposited onto 36 lithium tantalate (LiTaO3) SAW transducers using electropolymerization and were subsequently dedoped. Scanning electron microscopy (SEM) revealed the compact growth of the composites which is much denser than that of PANI nanofibers. The PANI/MWNT composite based SAW sensor was then exposed to different concentrations of hydrogen (H2) gas at room temperature with a demonstrated electrical response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pricing greenhouse gas emissions is a burgeoning and possibly lucrative financial means for climate change mitigation. Emissions pricing is being used to fund emissions-abatement technologies and to modify land management to improve carbon sequestration and retention. Here we discuss the principal land-management options under existing and realistic future emissions-price legislation in Australia, and examine them with respect to their anticipated direct and indirect effects on biodiversity. The main ways in which emissions price-driven changes to land management can affect biodiversity are through policies and practices for (1) environmental plantings for carbon sequestration, (2) native regrowth, (3) fire management, (4) forestry, (5) agricultural practices (including cropping and grazing), and (6) feral animal control. While most land-management options available to reduce net greenhouse gas emissions offer clear advantages to increase the viability of native biodiversity, we describe several caveats regarding potentially negative outcomes, and outline components that need to be considered if biodiversity is also to benefit from the new carbon economy. Carbon plantings will only have real biodiversity value if they comprise appropriate native tree species and provide suitable habitats and resources for valued fauna. Such plantings also risk severely altering local hydrology and reducing water availability. Management of regrowth post-agricultural abandonment requires setting appropriate baselines and allowing for thinning in certain circumstances, and improvements to forestry rotation lengths would likely increase carbon-retention capacity and biodiversity value. Prescribed burning to reduce the frequency of high-intensity wildfires in northern Australia is being used as a tool to increase carbon retention. Fire management in southern Australia is not readily amenable for maximising carbon storage potential, but will become increasingly important for biodiversity conservation as the climate warms. Carbon price-based modifications to agriculture that would benefit biodiversity include reductions in tillage frequency and livestock densities, reductions in fertiliser use, and retention and regeneration of native shrubs; however, anticipated shifts to exotic perennial grass species such as buffel grass and kikuyu could have net negative implications for native biodiversity. Finally, it is unlikely that major reductions in greenhouse gas emissions arising from feral animal control are possible, even though reduced densities of feral herbivores will benefit Australian biodiversity greatly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oriented graphitic nanostructured carbon film has been employed as a conductometric hydrogen gas sensor. The carbon film was energetically deposited using a filtered cathodic vacuum arc with a -75 V bias applied to a stainless steel grid placed 1cm from the surface of the Si substrate. The substrate was heated to 400°C prior to deposition. Electron microscopy showed evidence that the film consisted largely of vertically oriented graphitic sheets and had a density of 2.06 g/cm3. 76% of the atoms were bonded in sp2 or graphitic configurations. A change in the device resistance of >; 1.5% was exhibited upon exposure to 1 % hydrogen gas (in synthetic, zero humidity air) at 100°C. The time for the sensor resistance to increase by 1.5 % under these conditions was approximately 60 s and the baseline (zero hydrogen exposure) resistance remained constant to within 0.01% during and after the hydrogen exposures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular modelling has become a useful and widely applied tool to investigate separation and diffusion behavior of gas molecules through nano-porous low dimensional carbon materials, including quasi-1D carbon nanotubes and 2D graphene-like carbon allotropes. These simulations provide detailed, molecular level information about the carbon framework structure as well as dynamics and mechanistic insights, i.e. size sieving, quantum sieving, and chemical affinity sieving. In this perspective, we revisit recent advances in this field and summarize separation mechanisms for multicomponent systems from kinetic and equilibrium molecular simulations, elucidating also anomalous diffusion effects induced by the confining pore structure and outlining perspectives for future directions in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically-aligned carbon nanotube (VACNT) membranes show very high permeation fluxes due to the inherent smooth and frictionless nature of the interior of the nanotubes. However, the hydrogen selectivities are all in the Knudsen range and are quite low. In this study we grew molecular sieve zeolite imidazolate frameworks (ZIFs) via secondary seeded growth on the VACNT membranes as a gas selective layer. The ZIF layer has a thickness of 5–6 μm and shows good contact with the VACNT membrane surface. The VACNT supported ZIF membrane shows much higher H2 selectivity than Ar (7.0); O2 (13.6); N2 (15.1) and CH4 (9.8). We conclude that tailoring metal–organic frameworks on the membrane surface can be an effective route to improve the gas separation performance of the VACNT membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (~19 keV/μm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual γ-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ~1.48 in the SOBP and ~1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28–42 mm away from the primary beam suggesting minimal risk from long-range secondary particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically-aligned carbon nanotube membranes have been fabricated and characterized and the corresponding gas permeability and hydrogen separation were measured. The carbon nanotube diameter and areal density were adjusted by varying the catalyst vapour concentration (Fe/C ratio) in the mixed precursor. The permeances are one to two magnitudes higher than the Knudsen prediction, while the gas selectivities are still in the Knudsen range. The diameter and areal density effects were studied and compared, the temperature dependence of permeation is also discussed. The results confirm the existence of non-Knudsen transport and that surface adsorption diffusion may affect the total permeance at relative low temperature. The permeance of aligned carbon nanotube membranes can be improved by increasing areal density and operating at an optimum temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field-effect transistors (FETs) fabricated from undoped and Co2+-doped CdSe colloidal nanowires show typical n-channel transistor behaviour with gate effect. Exposed to microscope light, a 10 times current enhancement is observed in the doped nanowire-based devices due to the significant modification of the electronic structure of CdSe nanowires induced by Co2+-doping, which is revealed by theoretical calculations from spin-polarized plane-wave density functional theory.