261 resultados para Blanket Heating, Computer simulations
Resumo:
Whilst a variety of studies has appeared over the last decade addressing the gap between the potential promised by computers and the reality experienced in the classroom by teachers and students, few have specifically addressed the situation as it pertains to the visual arts classroom. The aim of this study was to explore the reality of the classroom use of computers for three visual arts highschool teachers and determine how computer technology might enrich visual arts teaching and learning. An action research approach was employed to enable the researcher to understand the situation from the teachers' points of view while contributing to their professional practice. The wider social context surrounding this study is characterised by an increase in visual communications brought about by rapid advances in computer technology. The powerful combination of visual imagery and computer technology is illustrated by continuing developments in the print, film and television industries. In particular, the recent growth of interactive multimedia epitomises this combination and is significant to this study as it represents a new form of publishing of great interest to educators and artists alike. In this social context, visual arts education has a significant role to play. By cultivating a critical awareness of the implications of technology use and promoting a creative approach to the application of computer technology within the visual arts, visual arts education is in a position to provide an essential service to students who will leave high school to participate in a visual information age as both consumers and producers.
Resumo:
The numerical modelling of electromagnetic waves has been the focus of many research areas in the past. Some specific applications of electromagnetic wave scattering are in the fields of Microwave Heating and Radar Communication Systems. The equations that govern the fundamental behaviour of electromagnetic wave propagation in waveguides and cavities are the Maxwell's equations. In the literature, a number of methods have been employed to solve these equations. Of these methods, the classical Finite-Difference Time-Domain scheme, which uses a staggered time and space discretisation, is the most well known and widely used. However, it is complicated to implement this method on an irregular computational domain using an unstructured mesh. In this work, a coupled method is introduced for the solution of Maxwell's equations. It is proposed that the free-space component of the solution is computed in the time domain, whilst the load is resolved using the frequency dependent electric field Helmholtz equation. This methodology results in a timefrequency domain hybrid scheme. For the Helmholtz equation, boundary conditions are generated from the time dependent free-space solutions. The boundary information is mapped into the frequency domain using the Discrete Fourier Transform. The solution for the electric field components is obtained by solving a sparse-complex system of linear equations. The hybrid method has been tested for both waveguide and cavity configurations. Numerical tests performed on waveguides and cavities for inhomogeneous lossy materials highlight the accuracy and computational efficiency of the newly proposed hybrid computational electromagnetic strategy.
Resumo:
n the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsi-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150°, 0/45/90/135°, 0/60/120° and 0/90°) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding.
Resumo:
The iPlan treatment planning sys-tem uses a pencil beam algorithm, with density cor-rections, to predict the doses delivered by very small (stereotactic) radiotherapy fields. This study tests the accuracy of dose predictions made by iPlan, for small-field treatments delivered to a planar solid wa-ter phantom and to heterogeneous human tissue using the BrainLAB m3 micro-multileaf collimator.
Resumo:
This paper investigates what happened in one Australian primary school as part of the establishment, use and development of a computer laboratory over a period of two years. As part of a school renewal project, the computer lab was introduced as an ‘innovative’ way to improve the skills of teachers and children in information and communication technologies (ICT) and to lead to curriculum change. However, the way in which the lab was conceptualised and used worked against achieving these goals. The micropolitics of educational change and an input-output understanding of computers meant that change remained structural rather pedagogical or philosophical.
Resumo:
The integration of computer technologies into everyday classroom life continues to provide pedagogical challenges for school systems, teachers and administrators. Data from an exploratory case study of one teacher and a multiage class of children in the first years of schooling in Australia show that when young children are using computers for set tasks in small groups, they require ongoing support from teachers, and to engage in peer interactions that are meaningful and productive. Classroom organization and the nature of teacher-child talk are key factors in engaging children in set tasks and producing desirable learning and teaching outcomes.