128 resultados para Arsenic in the body
Resumo:
Study design Anterior and posterior vertebral body heights were measured from sequential MRI scans of adolescent idiopathic scoliosis (AIS) patients and healthy controls. Objective To measure changes in vertebral body height over time during scoliosis progression to assess how vertebral body height discrepancies change during growth. Summary of background data Relative anterior overgrowth has been proposed as a potential driver for AIS initiation and progression. This theory proposes that the anterior column grows faster, and the posterior column slower, in AIS patients when compared to healthy controls. There is disagreement in the literature as to whether the anterior vertebral body heights are proportionally greater than posterior vertebral body heights in AIS patients when compared to healthy controls. To some extent, these discrepancies may be attributed to methodological differences. Methods MRI scans of the major curve of 21 AIS patients (mean age 12.5 ± 1.4 years, mean Cobb 32.2 ± 12.8º) and between T4 and T12 of 21 healthy adolescents (mean age 12.1 ± 0.5 years) were captured for this study. Of the 21 AIS patients, 14 had a second scan on average 10.8 ± 4.7 months after the first. Anterior and posterior vertebral body heights were measured from the true sagittal plane of each vertebra such that anterior overgrowth could be quantified. Results The difference between anterior and posterior vertebral body height in healthy, non-scoliotic children was significantly greater than in AIS patients with mild to moderate scoliosis. However there was no significant relationship between the overall anterior-posterior vertebral body height difference in AIS and either severity of the curve or its progression over time. Conclusions Whilst AIS patients have a proportionally longer anterior column than non-scoliotic controls, the degree of anterior overgrowth was not related to the rate of progression or the severity of the scoliotic curve.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated approximately 2,000, approximately 3,700 and approximately 9,500 SNPs explained approximately 21%, approximately 24% and approximately 29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of approximately 2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 x 10(-8) to P = 4 x 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.
Resumo:
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
Resumo:
A number of analogues of diaryl dihydropyrazole-3-carboxamides have been synthesized. Their activities were evaluated for appetite suppression and body weight reduction in animal models. Depending on the chemical modification of the selected dihydropyrazole scaffold, the lead compoundsthe bisulfate salt of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 26 and the bisulfate salt of (−)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 30showed significant body weight reduction in vivo, which is attributed to their CB1 antagonistic activity and exhibited a favorable pharmacokinetic profile. The molecular modeling studies also showed interactions of two isomers of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 9 with CB1 receptor in the homology model similar to those of N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (rimonabant) 1 and 4S-(−)-3-(4-chlorophenyl)-N-methyl-N‘-[(4-chlorophenyl)-sulfonyl]-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamidine (SLV-319) 2.
Resumo:
Vision is highly important for balance and gait and visual impairments are significantly associated with locomotion problems and falls in older people. There is now a large body of research linking falls and fall-related injuries with visual problems, some of which are easily remedied by surgery or refractive correction. However there is also evidence that the kind of refractive correction provided (in terms of single-vision or multifocal correction) can also have an effect on fall risk. This chapter provides an overview of the major findings in this area.
Resumo:
The Body Area Network (BAN) is an emerging technology that focuses on monitoring physiological data in, on and around the human body. BAN technology permits wearable and implanted sensors to collect vital data about the human body and transmit it to other nodes via low-energy communication. In this paper, we investigate interactions in terms of data flows between parties involved in BANs under four different scenarios targeting outdoor and indoor medical environments: hospital, home, emergency and open areas. Based on these scenarios, we identify data flow requirements between BAN elements such as sensors and control units (CUs) and parties involved in BANs such as the patient, doctors, nurses and relatives. Identified requirements are used to generate BAN data flow models. Petri Nets (PNs) are used as the formal modelling language. We check the validity of the models and compare them with the existing related work. Finally, using the models, we identify communication and security requirements based on the most common active and passive attack scenarios.
Resumo:
Objectives To examine the effects of overall level and timing of physical activity (PA) on changes from a healthy body mass index (BMI) category over 12 years in young adult women. Patients and Methods Participants in the Australian Longitudinal Study on Women's Health (younger cohort, born 1973-1978) completed surveys between 2000 (age 22-27 years) and 2012 (age 34-39 years). Physical activity was measured in 2000, 2003, 2006, and 2009 and was categorized as very low, low, active, or very active at each survey, and a cumulative PA score for this 9-year period was created. Logistic regression was used to examine relationships between PA accumulated across all surveys (cumulative PA model) and PA at each survey (critical periods PA model), with change in BMI category (from healthy to overweight or healthy to obese) from 2000 to 2012. Results In women with a healthy BMI in 2000, there were clear dose-response relationships between accumulated PA and transition to overweight (P=.03) and obesity (P<.01) between 2000 and 2012. The critical periods analysis indicated that very active levels of PA at the 2006 survey (when the women were 28-33 years old) and active or very active PA at the 2009 survey (age 31-36 years) were most protective against transitioning to overweight and obesity. Conclusion These findings confirm that maintenance of very high PA levels throughout young adulthood will significantly reduce the risk of becoming overweight or obese. There seems to be a critical period for maintaining high levels of activity at the life stage when many women face competing demands of caring for infants and young children.