127 resultados para Algorítmo GPS
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, traditionally employ Bank-to-Turn maneuvers to change heading and thus direction of travel. Commonly overlooked is the effect these maneuvers have on downward facing body fixed sensors, which as a result of bank, point away from the feature during turns. By adopting Skid-to-Turn maneuvers, the aircraft is able change heading whilst maintaining wings level flight, thus allowing body fixed sensors to maintain a downward facing orientation. Eliminating roll also helps to improve data quality, as sensors are no longer subjected to the swinging motion induced as they pivot about an axis perpendicular to their line of sight. Traditional tracking controllers that apply an indirect approach of capturing ground based data by flying directly overhead can also see the feature off center due to steady state pitch and roll required to stay on course. An Image Based Visual Servo controller is developed to address this issue, allowing features to be directly tracked within the image plane. Performance of the proposed controller is tested against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to simulate the field of view of a body fixed camera.
Resumo:
On the road, near collision events (also close calls or near-miss incidents) largely outnumber actual crashes, yet most of them can never be recorded by current traffic data collection technologies or crashes analysis tools. The analysis of near collisions data is an important step in the process of reducing the crash rate. There have been several studies that have investigated near collisions; to our knowledge, this is the first study that uses the functionalities provided by cooperative vehicles to collect near misses information. We use the VISSIM traffic simulator and a custom C++ engine to simulate cooperative vehicles and their ability to detect near collision events. Our results showed that, within a simple simulated environment, adequate information on near collision events can be collected using the functionalities of cooperative perception systems. The relationship between the ratio of detected events and the ratio of equipped vehicle was shown to closely follow a squared law, and the largest source of nondetection was packet loss instead of packet delays and GPS imprecision.
Resumo:
Background: Although the potential to reduce hospitalisation and mortality in chronic heart failure (CHF) is well reported, the feasibility of receiving healthcare by structured telephone support or telemonitoring is not. Aims: To determine; adherence, adaptation and acceptability to a national nurse-coordinated telephone-monitoring CHF management strategy. The Chronic Heart Failure Assistance by Telephone Study (CHAT). Methods: Triangulation of descriptive statistics, feedback surveys and qualitative analysis of clinical notes. Cohort comprised of standard care plus intervention (SC + I) participants who completed the first year of the study. Results: 30 GPs (70% rural) randomised to SC + I recruited 79 eligible participants, of whom 60 (76%) completed the full 12 month follow-up period. During this time 3619 calls were made into the CHAT system (mean 45.81 SD ± 79.26, range 0-369), Overall there was an adherence to the study protocol of 65.8% (95% CI 0.54-0.75; p = 0.001) however, of the 60 participants who completed the 12 month follow-up period the adherence was significantly higher at 92.3% (95% CI 0.82-0.97, p ≤ 0.001). Only 3% of this elderly group (mean age 74.7 ±9.3 years) were unable to learn or competently use the technology. Participants rated CHAT with a total acceptability rate of 76.45%. Conclusion: This study shows that elderly CHF patients can adapt quickly, find telephone-monitoring an acceptable part of their healthcare routine, and are able to maintain good adherence for a least 12 months. © 2007.
Resumo:
In order to support intelligent transportation system (ITS) road safety applications such as collision avoidance, lane departure warnings and lane keeping, Global Navigation Satellite Systems (GNSS) based vehicle positioning system has to provide lane-level (0.5 to 1 m) or even in-lane-level (0.1 to 0.3 m) accurate and reliable positioning information to vehicle users. However, current vehicle navigation systems equipped with a single frequency GPS receiver can only provide road-level accuracy at 5-10 meters. The positioning accuracy can be improved to sub-meter or higher with the augmented GNSS techniques such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP) which have been traditionally used in land surveying and or in slowly moving environment. In these techniques, GNSS corrections data generated from a local or regional or global network of GNSS ground stations are broadcast to the users via various communication data links, mostly 3G cellular networks and communication satellites. This research aimed to investigate the precise positioning system performances when operating in the high mobility environments. This involves evaluation of the performances of both RTK and PPP techniques using: i) the state-of-art dual frequency GPS receiver; and ii) low-cost single frequency GNSS receiver. Additionally, this research evaluates the effectiveness of several operational strategies in reducing the load on data communication networks due to correction data transmission, which may be problematic for the future wide-area ITS services deployment. These strategies include the use of different data transmission protocols, different correction data format standards, and correction data transmission at the less-frequent interval. A series of field experiments were designed and conducted for each research task. Firstly, the performances of RTK and PPP techniques were evaluated in both static and kinematic (highway with speed exceed 80km) experiments. RTK solutions achieved the RMS precision of 0.09 to 0.2 meter accuracy in static and 0.2 to 0.3 meter in kinematic tests, while PPP reported 0.5 to 1.5 meters in static and 1 to 1.8 meter in kinematic tests by using the RTKlib software. These RMS precision values could be further improved if the better RTK and PPP algorithms are adopted. The tests results also showed that RTK may be more suitable in the lane-level accuracy vehicle positioning. The professional grade (dual frequency) and mass-market grade (single frequency) GNSS receivers were tested for their performance using RTK in static and kinematic modes. The analysis has shown that mass-market grade receivers provide the good solution continuity, although the overall positioning accuracy is worse than the professional grade receivers. In an attempt to reduce the load on data communication network, we firstly evaluate the use of different correction data format standards, namely RTCM version 2.x and RTCM version 3.0 format. A 24 hours transmission test was conducted to compare the network throughput. The results have shown that 66% of network throughput reduction can be achieved by using the newer RTCM version 3.0, comparing to the older RTCM version 2.x format. Secondly, experiments were conducted to examine the use of two data transmission protocols, TCP and UDP, for correction data transmission through the Telstra 3G cellular network. The performance of each transmission method was analysed in terms of packet transmission latency, packet dropout, packet throughput, packet retransmission rate etc. The overall network throughput and latency of UDP data transmission are 76.5% and 83.6% of TCP data transmission, while the overall accuracy of positioning solutions remains in the same level. Additionally, due to the nature of UDP transmission, it is also found that 0.17% of UDP packets were lost during the kinematic tests, but this loss doesn't lead to significant reduction of the quality of positioning results. The experimental results from the static and the kinematic field tests have also shown that the mobile network communication may be blocked for a couple of seconds, but the positioning solutions can be kept at the required accuracy level by setting of the Age of Differential. Finally, we investigate the effects of using less-frequent correction data (transmitted at 1, 5, 10, 15, 20, 30 and 60 seconds interval) on the precise positioning system. As the time interval increasing, the percentage of ambiguity fixed solutions gradually decreases, while the positioning error increases from 0.1 to 0.5 meter. The results showed the position accuracy could still be kept at the in-lane-level (0.1 to 0.3 m) when using up to 20 seconds interval correction data transmission.
Resumo:
Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more generally on GNSS (Global Navigation Satellite System) observations to achieve centimeter-level accuracy positioning in real time. It is enabled by a network of Continuously Operating Reference Stations (CORS). CORS placement is an important problem in the design of network RTK as it directly affects not only the installation and running costs of the network RTK, but also the Quality of Service (QoS) provided by the network RTK. In our preliminary research on the CORS placement, we proposed a polynomial heuristic algorithm for a so-called location-based CORS placement problem. From a computational point of view, the location-based CORS placement is a largescale combinatorial optimization problem. Thus, although the heuristic algorithm is efficient in computation time it may not be able to find an optimal or near optimal solution. Aiming at improving the quality of solutions, this paper proposes a repairing genetic algorithm (RGA) for the location-based CORS placement problem. The RGA has been implemented and compared to the heuristic algorithm by experiments. Experimental results have shown that the RGA produces better quality of solutions than the heuristic algorithm.
Resumo:
The purpose of this paper is to analyse how participants learn in small business advisory programmes and to explore the impact of these learning programmes on the development of reflective learning dispositions in participants. The research involves two case studies of small business advisory programmes in Queensland, a state of Australia. One involves training in the use of GPS/GIS technology amongst rural SMEs and the other seeks to develop improved management and operational capabilities in regional and metropolitan manufacturing SMEs. Face to face semi-structured interviews were conducted throughout rural, regional and metropolitan Queensland with participants, trainers and senior executives in the administering organisations that ran the programmes. Learning in these programmes occurs through a combination of interaction with others and the adoption of practice-based and learner-centred processes. The impact of the programmes on participants includes the development of reflective learning dispositions, improved confidence in learning and appreciation of the value of new knowledge to their business. The research suggests that small business training programmes have the potential to affect the development of critical reflective learning dispositions in participants which is of fundamental importance to the development of a learning or knowledge economy.