166 resultados para Algebraic Riccati equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trivium is a stream cipher candidate of the eStream project. It has successfully moved into phase three of the selection process under the hardware category. No attacks faster than the exhaustive search have so far been reported on Trivium. Bivium-A and Bivium-B are simplified versions of Trivium that are built on the same design principles but with two registers. The simplified design is useful in investigating Trivium type ciphers with a reduced complexity and provides insight into effective attacks which could be extended to Trivium. This paper focuses on an algebraic analysis which uses the boolean satisfiability problem in propositional logic. For reduced variants of the cipher, this analysis recovers the internal state with a minimal amount of keystream observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This brief paper provides a novel derivation of the known asymptotic values of three-dimensional (3D) added mass and damping of marine structures in waves. The derivation is based on the properties of the convolution terms in the Cummins's Equation as derived by Ogilvie. The new derivation is simple and no approximations or series expansions are made. The results follow directly from the relative degree and low-frequency asymptotic properties of the rational representation of the convolution terms in the frequency domain. As an application, the extrapolation of damping values at high frequencies for the computation of retardation functions is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To test an explanatory model of the relationships between the nursing work environment, job satisfaction, job stress and emotional exhaustion for haemodialysis nurses, drawing on Kanter's theory of organizational empowerment. Background Understanding the organizational predictors of burnout (emotional exhaustion) in haemodialysis nurses is critical for staff retention and improving nurse and patient outcomes. Previous research has demonstrated high levels of emotional exhaustion among haemodialysis nurses, yet the relationships between nurses' work environment, job satisfaction, stress and emotional exhaustion in this population are poorly understood. Design A cross-sectional online survey. Methods 417 nurses working in haemodialysis units completed an online survey between October 2011–April 2012 using validated measures of the work environment, job satisfaction, job stress and emotional exhaustion. Results Overall, the structural equation model demonstrated adequate fit and we found partial support for the hypothesized relationships. Nurses' work environment had a direct positive effect on job satisfaction, explaining 88% of the variance. Greater job satisfaction, in turn, predicted lower job stress, explaining 82% of the variance. Job satisfaction also had an indirect effect on emotional exhaustion by mitigating job stress. However, job satisfaction did not have a direct effect on emotional exhaustion. Conclusion The work environment of haemodialysis nurses is pivotal to the development of job satisfaction. Nurses' job satisfaction also predicts their level of job stress and emotional exhaustion. Our findings suggest staff retention can be improved by creating empowering work environments that promote job satisfaction among haemodialysis nurses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A newspaper numbers game based on simple arithmetic relationships is discussed. Its potential to give students of elementary algebra practice in semi-ad hoc reasoning and to build general arithmetic reasoning skills is explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report studies an algebraic equation whose solution gives the image system of a source of light as seen by an observer inside a reflecting spherical surface. The equation is looked at numerically using GeoGebra. Under the hypothesis that our galaxy is enveloped by a reflecting interface this becomes a possible model for many mysterious extra galactic observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article elucidates and analyzes the fundamental underlying structure of the renormalization group (RG) approach as it applies to the solution of any differential equation involving multiple scales. The amplitude equation derived through the elimination of secular terms arising from a naive perturbation expansion of the solution to these equations by the RG approach is reduced to an algebraic equation which is expressed in terms of the Thiele semi-invariants or cumulants of the eliminant sequence { Zi } i=1 . Its use is illustrated through the solution of both linear and nonlinear perturbation problems and certain results from the literature are recovered as special cases. The fundamental structure that emerges from the application of the RG approach is not the amplitude equation but the aforementioned algebraic equation. © 2008 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algebraic immunity AI(f) defined for a boolean function f measures the resistance of the function against algebraic attacks. Currently known algorithms for computing the optimal annihilator of f and AI(f) are inefficient. This work consists of two parts. In the first part, we extend the concept of algebraic immunity. In particular, we argue that a function f may be replaced by another boolean function f^c called the algebraic complement of f. This motivates us to examine AI(f ^c ). We define the extended algebraic immunity of f as AI *(f)= min {AI(f), AI(f^c )}. We prove that 0≤AI(f)–AI *(f)≤1. Since AI(f)–AI *(f)= 1 holds for a large number of cases, the difference between AI(f) and AI *(f) cannot be ignored in algebraic attacks. In the second part, we link boolean functions to hypergraphs so that we can apply known results in hypergraph theory to boolean functions. This not only allows us to find annihilators in a fast and simple way but also provides a good estimation of the upper bound on AI *(f).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that, although a uniform magnetic field inhibits the onset of small amplitude thermal convection in a layer of fluid heated from below, isolated convection cells may persist if the fluid motion within them is sufficiently vigorous to expel magnetic flux. Such fully nonlinear(‘‘convecton’’) solutions for magnetoconvection have been investigated by several authors. Here we explore a model amplitude equation describing this separation of a fluid layer into a vigorously convecting part and a magnetically-dominated part at rest. Our analysis elucidates the origin of the scaling laws observed numerically to form the boundaries in parameter space of the region of existence of these localised states, and importantly, for the lowest thermal forcing required to sustain them.