199 resultados para Air stripping
Resumo:
Diesel particulate matter (DPM), in particular, has been likened in a somewhat inflammatory manner to be the ‘next asbestos’. From the business change perspective, there are three areas holding the industry back from fully engaging with the issue: 1. There is no real feedback loop in any operational sense to assess the impact of investment or application of controls to manage diesel emissions. 2. DPM are getting ever smaller and more numerous, but there is no practical way of measuring them to regulate them in the field. Mass, the current basis of regulation, is becoming less and less relevant. 3. Diesel emissions management is generally wholly viewed as a cost, yet there are significant areas of benefit available from good management. This paper discusses a feedback approach to address these three areas to move the industry forward. The six main areas of benefit from providing a feedback loop by continuously monitoring diesel emissions have been identified: 1. Condition-based maintenance. Emissions change instantaneously if engine condition changes. 2. Operator performance. An operator can use a lot more fuel for little incremental work output through poor technique or discipline. 3. Vehicle utilisation. Operating hours achieved and ratios of idling to under power affect the proportion of emissions produced with no economic value. 4. Fuel efficiency. This allows visibility into other contributing configuration and environmental factors for the vehicle. 5. Emission rates. This allows scope to directly address the required ratio of ventilation to diesel emissions. 6. Total carbon emissions - for NGER-type reporting requirements, calculating the emissions individually from each vehicle rather than just reporting on fuel delivered to a site.
Resumo:
This paper provides details on comparative testing of axle-to-chassis forces of two heavy vehicles (HVs) based on an experimental programme carried out in 2007. Dynamic forces at the air springs were measured against speed and roughness values for the test roads used. One goal of that programme was to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents a portion of the methodology, analysis and results from that programme. Two analytical techniques and their results are presented. The first uses correlation coefficients of the forces between air springs and the second is a student’s t-test. These were used to determine the causality surrounding improved dynamic load sharing between heavy vehicle air springs with larger air lines installed longitudinally compared with the standard sized air lines installed on the majority of air-sprung heavy vehicles.
Resumo:
Double-pass counter flow v-grove collector is considered one of the most efficient solar air-collectors. In this design of the collector, the inlet air initially flows at the top part of the collector and changes direction once it reaches the end of the collector and flows below the collector to the outlet. A mathematical model is developed for this type of collector and simulation is carried out using MATLAB programme. The simulation results were verified with three distinguished research results and it was found that the simulation has the ability to predict the performance of the air collector accurately as proven by the comparison of experimental data with simulation. The difference between the predicted and experimental results is, at maximum, approximately 7% which is within the acceptable limit considering some uncertainties in the input parameter values to allow comparison. A parametric study was performed and it was found that solar radiation, inlet air temperature, flow rate and length have a significant effect on the efficiency of the air collector. Additionally, the results are compared with single flow V-groove collector.
Resumo:
Objectives Actigraphy can reliably assess sleep in healthy adults and be used to estimate total sleep time in suspected obstructive sleep apnoea (OSA) patients. We compared sleep quality for Continuous Positive Air Pressure (CPAP) treated OSA patients and controls, evaluating the impact of stopping CPAP for one night. Methods 11 men, aged 51–75 years (m = 65.6 years), compliant CPAP users, treated for 1–19 years (m = 7.8 years) wore Cambridge Neurotechnology Ltd actiwatches for one night while using CPAP and for one night sleeping without CPAP. A control group of 11 healthy men, aged 63–74 years (m = 64.1 years) slept normally whilst wearing an actiwatch. Subsequent daytime sleepiness was recorded using Karolinska sleepiness scores (KSS). Results Actimetry showed no significant differences between actual sleep time, sleep efficiency, sleep disturbance index or number of wake bouts when comparing OSA participants using CPAP, with controls; there was no difference in subsequent daytime sleepiness, control KSS = 4.21, OSA KSS = 4.17. Without CPAP there was no significant difference in sleep length or sleep onset latency compared with using CPAP, but there was a significant impact on sleep quality as shown by: increased sleep disturbance index from 7.9 to 13.8 [t(10) = 3.510, P < 0.05], decreased percent of actual sleep from 92.05% to 86.15% [t(10) = 3.51, P < 0.05], decreased sleep efficiency from 86.6% to 81% [t(10) = 2.204, P < 0.05] and increased number of wake bouts from 29 to 42.5 [t(10) = 3.877, P < 0.05]. Daytime sleepiness became significantly worse increasing from KSS 4.17 to 6.27 [t(10) = )4.96, P < 0.05]. Conclusion There was no disparity in sleep quality or KSS scores between CPAP treated OSA patients and healthy controls of a similar age. Treated OSA patients obtained quality sleep with no elevated day time sleepiness. However, cessation of treatment for one night caused sleep quality to deteriorate despite a comparable sleep time; the deterioration in sleep quality could explain the increase in daytime sleepiness. OSA patients need to know that even short-term noncompliance with CPAP treatment significantly impairs sleep quality, leading to excessive sleepiness during monotonous tasks such as driving. Actigraphy successfully identified nights of non-compliance in treated OSA patients; but did not differentiate between the sleep of CPAP treated OSA patients and healthy controls.
Resumo:
Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature.
Resumo:
Microscopic changes occur in plant food materials during drying significantly influence the macroscopic properties and quality factors of the dried food materials. It is very critical to study microstructure to understand the underlying cellular mechanisms to improve performance of the food drying techniques. However, there is very limited research conducted on such microstructural changes of plant food material during drying. In this work, Gala apple parenchyma tissue samples were studied using a scanning electron microscope for gradual microstructural changes as affected by temperature, time and moisture content during hot air drying at two drying temperatures: 57 ℃ and 70 ℃. For fresh samples, the average cellular parameter values were; cell area: 20000 μm2, ferret diameter: 160 μm, perimeter: 600 μm, roundness: 0.76, elongation: 1.45 and compactness: 0.84. During drying, a higher degree of cell shrinkage was observed with cell wall warping and increase in intercellular space. However, no significant cell wall breakage was observed. The overall reduction of cell area, ferret diameter and perimeter were about 60%, 40% and 30%. The cell roundness and elongation showed overall increments of about 5% and the compactness remained unchanged. Throughout the drying cycle, cellular deformations were mainly influenced by the moisture content. During the initial and intermediate stages of drying, cellular deformations were also positively influenced by the drying temperature and the effect was reversed at the final stages of drying which provides clues for case hardening of the material.
Resumo:
‘Carbon trading fraudsters may have accounted for up to 90% of all market activity in some European countries, with criminals pocketing billions, mainly in Britain, France, Spain, Denmark and Holland, according to Europol and the European law enforcement agency.’ (Mason, 2009). ‘Carbon offset projects often result in land grabs, local environmental and social conflicts, as well as the repression of local communities and movements. The CDM approval process for projects allows little space for the voices of Indigenous Peoples and local communities – in fact, no project has ever been rejected on the grounds of rights violations, despite these being widespread’. (Carbon Trade Watch, 2013)
Resumo:
This work presents a demand side response model (DSR) which assists small electricity consumers, through an aggregator, exposed to the market price to proactively mitigate price and peak impact on the electrical system. The proposed model allows consumers to manage air-conditioning when as a function of possible price spikes. The main contribution of this research is to demonstrate how consumers can minimise the total expected cost by optimising air-conditioning to account for occurrences of a price spike in the electricity market. This model investigates how pre-cooling method can be used to minimise energy costs when there is a substantial risk of an electricity price spike. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics during hot days on weekdays in the period 2011 to 2012.
Resumo:
The central document governing the global organization of Air Navigation Services (ANS) is the Convention on International Civil Aviation, commonly referred to as the “Chicago Convention,” whose original version was signed in that city in 1944. In the Convention, Contracting States agreed to ensure the minimum standards of ANS established by ICAO, a specialized United Nations agency created by the Convention. Emanating from obligations under the Chicago Convention, ANS has traditionally provided by departments of national governments. However, there is a widespread trend toward transferring delivery of ANS services outside of line departments of national governments to independent agencies or corporations. The Civil Air Navigation Services Organisation (CANSO), which is the trade association for independent ANS providers, currently counts approximately 60 members, and is steadily growing. However, whatever delivery mechanisms are chosen, national governments remain ultimately responsible for ensuring that adequate ANS services are available. The provision by governments of ANS reflects the responsibility of the state for safety, international relations, and indirectly, the macroeconomic benefits of ensuring a sound infrastructure for aviation. ANS is a “public good” and an “essential good” provided to all aircraft using a country’s airfields and airspace. However, ANS also represents a service that directly benefits only a limited number of users, notably aircraft owners and operators. The idea that the users of the system, rather than the taxpaying public, should incur the costs associated with ANS provision is inherent in the commercialization process. However, ICAO sets out broad principles for the establishment of user charges, which member states are expected to comply with. ICAO states that only distance flown and aircraft weights are acceptable parameters for use in a charging system. These two factors are considered to be easy to measure, bear a reasonable relationship to the value of service received, and do not discriminate due to factors such as where the flight originated or the nation of aircraft registration.
Resumo:
Novel nano zero-valent iron/palygorskite composite materials prepared by evaporative and centrifuge methods are tested for the degradation of bisphenol A in an aqueous medium. A systematic study is presented which showed that nano zero-valent iron material has little effect on bisphenol A degradation. When hydrogen peroxide was added to initiate the reaction, some percentage of bisphenol A removal (∼20%) was achieved; however, with the aid of air bubbles, the percentage removal can be significantly increased to ∼99%. Compared with pristine nano zero-valent iron and commercial iron powder, nano zero-valent iron/palygorskite composite materials have much higher reactivity towards bisphenol A and these materials are superior as they have little impact on the solution pH. However, for pristine nano zero-valent iron, it is difficult to maintain the reaction system at a favourable low pH which is a key factor in maintaining high bisphenol A removal. All materials were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The optimum conditions were obtained based on a series of batch experiments. This study has extended the application of nano zero-valent iron/palygorskite composites as effective materials for the removal of phenolic compounds from the environment.
Resumo:
This project was conducted at Lithgow Correctional Centre (LCC), NSW, Australia. Air quality field measurements were conducted on two occasions (23-27 May 2012, and 3-8 December 2012), just before and six months after the introduction of smoke free buildings policies (28 May 2012) at the LCC, respectively. The main aims of this project were to: (1) investigate the indoor air quality; (2) quantify the level of exposure to environmental tobacco smoke (ETS); (3) identify the main indoor particle sources; (4) distinguish between PM2.5 / particle number from ETS, as opposed to other sources; and (5) provide recommendations for improving indoor air quality and/or minimising exposure at the LCC. The measurements were conducted in Unit 5.2A, Unit 5.2B, Unit 1.1 and Unit 3.1, together with personal exposure measurements, based on the following parameters: -Indoor and outdoor particle number (PN) concentration in the size range 0.005-3 µm -Indoor and outdoor PM2.5 particle mass concentration -Indoor and outdoor VOC concentrations -Personal particle number exposure levels (in the size range 0.01-0.3 µm) -Indoor and outdoor CO and CO2 concentrations, temperature and relative humidity In order to enhance the outcomes of this project, the indoor and outdoor particle number (PN) concentrations were measured by two additional instruments (CPC 3787) which were not listed in the original proposal.
Resumo:
The purpose of this study was to investigate the effect of very small air gaps (less than 1 mm) on the dosimetry of small photon fields used for stereotactic treatments. Measurements were performed with optically stimulated luminescent dosimeters (OSLDs) for 6 MV photons on a Varian 21iX linear accelerator with a Brainlab lMLC attachment for square field sizes down to 6 mm 9 6 mm. Monte Carlo simulations were performed using EGSnrc C++ user code cavity. It was found that the Monte Carlo model used in this study accurately simulated the OSLD measurements on the linear accelerator. For the 6 mm field size, the 0.5 mm air gap upstream to the active area of the OSLD caused a 5.3 % dose reduction relative to a Monte Carlo simulation with no air gap...
Resumo:
In this work, 17-polychlorinated dibenzo-pdioxin/furan (PCDD/Fs) isomers were measured in ambient air at four urban sites in Seoul, Korea (from February to June 2009). The concentrations of their summed values RPCDD/Fs) across all four sites ranged from 1,947 (271 WHO05 TEQ) (Jong Ro) to 2,600 (349 WHO05 TEQ) fg/m3 (Yang Jae) with a mean of 2,125 ± 317) fg/m3 (292 WHO05 TEQ fg/m3). The sum values for the two isomer groups of RPCDD and RPCDF were 527 (30 WHO05 TEQ) and 1,598 (263 WHO05 TEQ) fg/m3, respectively. The concentration profile of individual species was dominated by the 2,3,4,7,8-PeCDF isomer, which contributed approximately 36 % of the RPCDD/Fs value. The observed temporal trends in PCDD/F concentrations were characterized by relative enhancement in the winter and spring. The relative contribution of different sources, when assessed by principal component analysis, is explained by the dominance of vehicular emissions along with coal (or gas) burning as the key source of ambient PCDD/Fs in the residential areas studied.
Resumo:
Passenger experience has become a major factor that influences the success of an airport. In this context, passenger flow simulation has been used in designing and managing airports. However, most passenger flow simulations failed to consider the group dynamics when developing passenger flow models. In this paper, an agent-based model is presented to simulate passenger behaviour at the airport check-in and evacuation process. The simulation results show that the passenger behaviour can have significant influences on the performance and utilisation of services in airport terminals. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.