202 resultados para Affective classification
Resumo:
Object classification is plagued by the issue of session variation. Session variation describes any variation that makes one instance of an object look different to another, for instance due to pose or illumination variation. Recent work in the challenging task of face verification has shown that session variability modelling provides a mechanism to overcome some of these limitations. However, for computer vision purposes, it has only been applied in the limited setting of face verification. In this paper we propose a local region based intersession variability (ISV) modelling approach, and apply it to challenging real-world data. We propose a region based session variability modelling approach so that local session variations can be modelled, termed Local ISV. We then demonstrate the efficacy of this technique on a challenging real-world fish image database which includes images taken underwater, providing significant real-world session variations. This Local ISV approach provides a relative performance improvement of, on average, 23% on the challenging MOBIO, Multi-PIE and SCface face databases. It also provides a relative performance improvement of 35% on our challenging fish image dataset.
Resumo:
Poor complaint management may result in organizations losing customers and revenue. Consumers exhibit negative emotional responses when dissatisfied and this may lead to a complaint to a third-party organization. Since little information is available on the role of emotion in the consumer complaint process or how to manage complaints effectively, we offer an emotions perspective by applying Affective Events Theory (AET) to complaint behavior. This study presents the first application of AET in a consumption context and advances a theoretical framework supported by qualitative research for emotional responses to complaints. In contrast to commonly held views on gender and emotion, men as well as women use emotion-focused coping to complain.
Resumo:
A cell classification algorithm that uses first, second and third order statistics of pixel intensity distributions over pre-defined regions is implemented and evaluated. A cell image is segmented into 6 regions extending from a boundary layer to an inner circle. First, second and third order statistical features are extracted from histograms of pixel intensities in these regions. Third order statistical features used are one-dimensional bispectral invariants. 108 features were considered as candidates for Adaboost based fusion. The best 10 stage fused classifier was selected for each class and a decision tree constructed for the 6-class problem. The classifier is robust, accurate and fast by design.
Resumo:
Real-time image analysis and classification onboard robotic marine vehicles, such as AUVs, is a key step in the realisation of adaptive mission planning for large-scale habitat mapping in previously unexplored environments. This paper describes a novel technique to train, process, and classify images collected onboard an AUV used in relatively shallow waters with poor visibility and non-uniform lighting. The approach utilises Förstner feature detectors and Laws texture energy masks for image characterisation, and a bag of words approach for feature recognition. To improve classification performance we propose a usefulness gain to learn the importance of each histogram component for each class. Experimental results illustrate the performance of the system in characterisation of a variety of marine habitats and its ability to operate onboard an AUV's main processor suitable for real-time mission planning.
Resumo:
This article explores how the imaginative use of the landscape in Baz Luhrmann’s Australia (2008) intersects with the fantasy of Australianness that the film constructs. We argue the fictional Never-Never Land through which the film’s characters travel is an, albeit problematic, ‘indigenizing’ space that can be entered imaginatively through cultural texts including poetry, literature and film, or through cultural practices including touristic pilgrimages to landmarks such as Uluru and Kakadu National Park. These actual and virtual journeys to the Never-Never have broader implications in terms of fostering a sense of belonging and legitimating white presence in the land through affect, nostalgia and the invocation of an imagined sense of solidarity and community. The heterotopic concept of the Never-Never functions to create an ahistorical, inclusive space that grounds diverse conceptions of Australianness in a shared sense of belonging and home that is as mythical, contradictory and wondrous as the idea of the Never-Never itself. The representations of this landscape and the story of the characters that traverse it self-consciously construct a relationship to past events and to film history, as well as constructing a comfortable subject position for contemporary Australians to occupy in relation to the land, the colonial past, and the present.
Resumo:
Objective To evaluate the effects of Optical Character Recognition (OCR) on the automatic cancer classification of pathology reports. Method Scanned images of pathology reports were converted to electronic free-text using a commercial OCR system. A state-of-the-art cancer classification system, the Medical Text Extraction (MEDTEX) system, was used to automatically classify the OCR reports. Classifications produced by MEDTEX on the OCR versions of the reports were compared with the classification from a human amended version of the OCR reports. Results The employed OCR system was found to recognise scanned pathology reports with up to 99.12% character accuracy and up to 98.95% word accuracy. Errors in the OCR processing were found to minimally impact on the automatic classification of scanned pathology reports into notifiable groups. However, the impact of OCR errors is not negligible when considering the extraction of cancer notification items, such as primary site, histological type, etc. Conclusions The automatic cancer classification system used in this work, MEDTEX, has proven to be robust to errors produced by the acquisition of freetext pathology reports from scanned images through OCR software. However, issues emerge when considering the extraction of cancer notification items.
Resumo:
Objective: To develop a system for the automatic classification of pathology reports for Cancer Registry notifications. Method: A two pass approach is proposed to classify whether pathology reports are cancer notifiable or not. The first pass queries pathology HL7 messages for known report types that are received by the Queensland Cancer Registry (QCR), while the second pass aims to analyse the free text reports and identify those that are cancer notifiable. Cancer Registry business rules, natural language processing and symbolic reasoning using the SNOMED CT ontology were adopted in the system. Results: The system was developed on a corpus of 500 histology and cytology reports (with 47% notifiable reports) and evaluated on an independent set of 479 reports (with 52% notifiable reports). Results show that the system can reliably classify cancer notifiable reports with a sensitivity, specificity, and positive predicted value (PPV) of 0.99, 0.95, and 0.95, respectively for the development set, and 0.98, 0.96, and 0.96 for the evaluation set. High sensitivity can be achieved at a slight expense in specificity and PPV. Conclusion: The system demonstrates how medical free-text processing enables the classification of cancer notifiable pathology reports with high reliability for potential use by Cancer Registries and pathology laboratories.
Resumo:
The aim of this research is to report initial experimental results and evaluation of a clinician-driven automated method that can address the issue of misdiagnosis from unstructured radiology reports. Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to disperse information resources and vast amounts of manual processing of unstructured information, a point-of-care accurate diagnosis is often difficult. A rule-based method that considers the occurrence of clinician specified keywords related to radiological findings was developed to identify limb abnormalities, such as fractures. A dataset containing 99 narrative reports of radiological findings was sourced from a tertiary hospital. The rule-based method achieved an F-measure of 0.80 and an accuracy of 0.80. While our method achieves promising performance, a number of avenues for improvement were identified using advanced natural language processing (NLP) techniques.
Resumo:
Objective To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. Materials and Methods 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb structures. Automated methods were then used to extract features from these reports that could be useful for their automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector machine algorithm were formally evaluated using cross-fold validation over the 99 reports. Result Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter feature has not been used in previous works that attempted classifying free-text radiology reports. Discussion Automated classification methods have proven effective at identifying fractures and other abnormalities from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders. Conclusion This investigation shows early promising results and future work will further validate and strengthen the proposed approaches.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.
Resumo:
Next Generation Sequencing (NGS) has revolutionised molecular biology, resulting in an explosion of data sets and an increasing role in clinical practice. Such applications necessarily require rapid identification of the organism as a prelude to annotation and further analysis. NGS data consist of a substantial number of short sequence reads, given context through downstream assembly and annotation, a process requiring reads consistent with the assumed species or species group. Highly accurate results have been obtained for restricted sets using SVM classifiers, but such methods are difficult to parallelise and success depends on careful attention to feature selection. This work examines the problem at very large scale, using a mix of synthetic and real data with a view to determining the overall structure of the problem and the effectiveness of parallel ensembles of simpler classifiers (principally random forests) in addressing the challenges of large scale genomics.