192 resultados para Aeroelascity, Optimization, Uncertainty


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a multi-criteria optimisation study of group replacement schedules for water pipelines, which is a capital-intensive and service critical decision. A new mathematical model was developed, which minimises total replacement costs while maintaining a satisfactory level of services. The research outcomes are expected to enrich the body of knowledge of multi-criteria decision optimisation, where group scheduling is required. The model has the potential to optimise replacement planning for other types of linear asset networks resulting in bottom-line benefits for end users and communities. The results of a real case study show that the new model can effectively reduced the total costs and service interruptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study considered the problem of predicting survival, based on three alternative models: a single Weibull, a mixture of Weibulls and a cure model. Instead of the common procedure of choosing a single “best” model, where “best” is defined in terms of goodness of fit to the data, a Bayesian model averaging (BMA) approach was adopted to account for model uncertainty. This was illustrated using a case study in which the aim was the description of lymphoma cancer survival with covariates given by phenotypes and gene expression. The results of this study indicate that if the sample size is sufficiently large, one of the three models emerge as having highest probability given the data, as indicated by the goodness of fit measure; the Bayesian information criterion (BIC). However, when the sample size was reduced, no single model was revealed as “best”, suggesting that a BMA approach would be appropriate. Although a BMA approach can compromise on goodness of fit to the data (when compared to the true model), it can provide robust predictions and facilitate more detailed investigation of the relationships between gene expression and patient survival. Keywords: Bayesian modelling; Bayesian model averaging; Cure model; Markov Chain Monte Carlo; Mixture model; Survival analysis; Weibull distribution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to knowledge gaps in relation to urban stormwater quality processes, an in-depth understanding of model uncertainty can enhance decision making. Uncertainty in stormwater quality models can originate from a range of sources such as the complexity of urban rainfall-runoff-stormwater pollutant processes and the paucity of observed data. Unfortunately, studies relating to epistemic uncertainty, which arises from the simplification of reality are limited and often deemed mostly unquantifiable. This paper presents a statistical modelling framework for ascertaining epistemic uncertainty associated with pollutant wash-off under a regression modelling paradigm using Ordinary Least Squares Regression (OLSR) and Weighted Least Squares Regression (WLSR) methods with a Bayesian/Gibbs sampling statistical approach. The study results confirmed that WLSR assuming probability distributed data provides more realistic uncertainty estimates of the observed and predicted wash-off values compared to OLSR modelling. It was also noted that the Bayesian/Gibbs sampling approach is superior compared to the most commonly adopted classical statistical and deterministic approaches commonly used in water quality modelling. The study outcomes confirmed that the predication error associated with wash-off replication is relatively higher due to limited data availability. The uncertainty analysis also highlighted the variability of the wash-off modelling coefficient k as a function of complex physical processes, which is primarily influenced by surface characteristics and rainfall intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wide applicability of correlation analysis inspired the development of this paper. In this paper, a new correlated modified particle swarm optimization (COM-PSO) is developed. The Correlation Adjustment algorithm is proposed to recover the correlation between the considered variables of all particles at each of iterations. It is shown that the best solution, the mean and standard deviation of the solutions over the multiple runs as well as the convergence speed were improved when the correlation between the variables was increased. However, for some rotated benchmark function, the contrary results are obtained. Moreover, the best solution, the mean and standard deviation of the solutions are improved when the number of correlated variables of the benchmark functions is increased. The results of simulations and convergence performance are compared with the original PSO. The improvement of results, the convergence speed, and the ability to simulate the correlated phenomena by the proposed COM-PSO are discussed by the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the K-means algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley’s Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new hybrid evolutionary algorithm based on Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for daily Volt/Var control in distribution system including Distributed Generators (DGs). Due to the small X/R ratio and radial configuration of distribution systems, DGs have much impact on this problem. Since DGs are independent power producers or private ownership, a price based methodology is proposed as a proper signal to encourage owners of DGs in active power generation. Generally, the daily Volt/Var control is a nonlinear optimization problem. Therefore, an efficient hybrid evolutionary method based on Particle Swarm Optimization and Ant Colony Optimization (ACO), called HPSO, is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. The feasibility of the proposed algorithm is demonstrated and compared with methods based on the original PSO, ACO and GA algorithms on IEEE 34-bus distribution feeder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new algorithm based on honey-bee mating optimization (HBMO) to estimate harmonic state variables in distribution networks including distributed generators (DGs). The proposed algorithm performs estimation for both amplitude and phase of each harmonics by minimizing the error between the measured values from phasor measurement units (PMUs) and the values computed from the estimated parameters during the estimation process. Simulation results on two distribution test system are presented to demonstrate that the speed and accuracy of proposed distribution harmonic state estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as weight least square (WLS), genetic algorithm (GA) and tabu search (TS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an efficient algorithm for multi-objective distribution feeder reconfiguration based on Modified Honey Bee Mating Optimization (MHBMO) approach. The main objective of the Distribution feeder reconfiguration (DFR) is to minimize the real power loss, deviation of the nodes’ voltage. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. So the metahuristic algorithm has been applied to this problem. This paper describes the full algorithm to Objective functions paid, The results of simulations on a 32 bus distribution system is given and shown high accuracy and optimize the proposed algorithm in power loss minimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long query provides more useful hints for searching relevant documents, but it is likely to introduce noise which affects retrieval performance. In order to smooth such adverse effect, it is important to reduce noisy terms, introduce and boost additional relevant terms. This paper presents a comprehensive framework, called Aspect Hidden Markov Model (AHMM), which integrates query reduction and expansion, for retrieval with long queries. It optimizes the probability distribution of query terms by utilizing intra-query term dependencies as well as the relationships between query terms and words observed in relevance feedback documents. Empirical evaluation on three large-scale TREC collections demonstrates that our approach, which is automatic, achieves salient improvements over various strong baselines, and also reaches a comparable performance to a state of the art method based on user’s interactive query term reduction and expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel algorithm based on particle swarm optimization (PSO) to estimate the states of electric distribution networks. In order to improve the performance, accuracy, convergence speed, and eliminate the stagnation effect of original PSO, a secondary PSO loop and mutation algorithm as well as stretching function is proposed. For accounting uncertainties of loads in distribution networks, pseudo-measurements is modeled as loads with the realistic errors. Simulation results on 6-bus radial and 34-bus IEEE test distribution networks show that the distribution state estimation based on proposed DLM-PSO presents lower estimation error and standard deviation in comparison with algorithms such as WLS, GA, HBMO, and original PSO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the Mossman Mill District Practices Framework. It was developed in the Wet Tropics region within the Great Barrier Reef in north-eastern Australia to describe the environmental benefits of agricultural management practices for the sugar cane industry. The framework translates complex, unclear and overlapping environmental plans, policy and legal arrangements into a simple framework of management practices that landholders can use to improve their management actions. Practices range from those that are old or outdated through to aspirational practices that have the potential to achieve desired resource condition targets. The framework has been applied by stakeholders at multiple scales to better coordinate and integrate a range of policy arrangements to improve natural resource management. It has been used to structure monitoring and evaluation in order to underpin a more adaptive approach to planning at mill district and property scale. Potentially, the framework and approach can be applied across fields of planning where adaptive management is needed. It has the potential to overcome many of the criticisms of property-scale and regional Natural Resource Management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Chapters 1 through 9 of the book (with the exception of a brief discussion on observers and integral action in Section 5.5 of Chapter 5) we considered constrained optimal control problems for systems without uncertainty, that is, with no unmodelled dynamics or disturbances, and where the full state was available for measurement. More realistically, however, it is necessary to consider control problems for systems with uncertainty. This chapter addresses some of the issues that arise in this situation. As in Chapter 9, we adopt a stochastic description of uncertainty, which associates probability distributions to the uncertain elements, that is, disturbances and initial conditions. (See Section 12.6 for references to alternative approaches to model uncertainty.) When incomplete state information exists, a popular observer-based control strategy in the presence of stochastic disturbances is to use the certainty equivalence [CE] principle, introduced in Section 5.5 of Chapter 5 for deterministic systems. In the stochastic framework, CE consists of estimating the state and then using these estimates as if they were the true state in the control law that results if the problem were formulated as a deterministic problem (that is, without uncertainty). This strategy is motivated by the unconstrained problem with a quadratic objective function, for which CE is indeed the optimal solution (˚Astr¨om 1970, Bertsekas 1976). One of the aims of this chapter is to explore the issues that arise from the use of CE in RHC in the presence of constraints. We then turn to the obvious question about the optimality of the CE principle. We show that CE is, indeed, not optimal in general. We also analyse the possibility of obtaining truly optimal solutions for single input linear systems with input constraints and uncertainty related to output feedback and stochastic disturbances.We first find the optimal solution for the case of horizon N = 1, and then we indicate the complications that arise in the case of horizon N = 2. Our conclusion is that, for the case of linear constrained systems, the extra effort involved in the optimal feedback policy is probably not justified in practice. Indeed, we show by example that CE can give near optimal performance. We thus advocate this approach in real applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Service-oriented Architectures, business processes can be realized by composing loosely coupled services. The problem of QoS-aware service composition is widely recognized in the literature. Existing approaches on computing an optimal solution to this problem tackle structured business processes, i.e., business processes which are composed of XOR-block, AND-block, and repeat loop orchestration components. As of yet, OR-block and unstructured orchestration components have not been sufficiently considered in the context of QoS-aware service composition. The work at hand addresses this shortcoming. An approach for computing an optimal solution to the service composition problem is proposed considering the structured orchestration components, such as AND/XOR/OR-block and repeat loop, as well as unstructured orchestration components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaffolds play a pivotal role in tissue engineering, promoting the synthesis of neo extra-cellular matrix (ECM), and providing temporary mechanical support for the cells during tissue regeneration. Advances introduced by additive manufacturing techniques have significantly improved the ability to regulate scaffold architecture, enhancing the control over scaffold shape and porosity. Thus, considerable research efforts have been devoted to the fabrication of 3D porous scaffolds with optimized micro-architectural features. This chapter gives an overview of the methods for the design of additively manufactured scaffolds and their applicability in tissue engineering (TE). Along with a survey of the state of the art, the Authors will also present a recently developed method, called Load-Adaptive Scaffold Architecturing (LASA), which returns scaffold architectures optimized for given applied mechanical loads systems, once the specific stress distribution is evaluated through Finite Element Analysis (FEA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of finite horizon optimal control of discrete-time linear systems with input constraints and uncertainty. The uncertainty for the problem analysed is related to incomplete state information (output feedback) and stochastic disturbances. We analyse the complexities associated with finding optimal solutions. We also consider two suboptimal strategies that could be employed for larger optimization horizons.