140 resultados para 380306 Planning and Problem Solving
Resumo:
AIMS This paper reports on the implementation of a research project that trials an educational strategy implemented over six months of an undergraduate third year nursing curriculum. This project aims to explore the effectiveness of ‘think aloud’ as a strategy for learning clinical reasoning for students in simulated clinical settings. BACKGROUND Nurses are required to apply and utilise critical thinking skills to enable clinical reasoning and problem solving in the clinical setting [1]. Nursing students are expected to develop and display clinical reasoning skills in practice, but may struggle articulating reasons behind decisions about patient care. For students learning to manage complex clinical situations, teaching approaches are required that make these instinctive cognitive processes explicit and clear [2-5]. In line with professional expectations, nursing students in third year at Queensland University of Technology (QUT) are expected to display clinical reasoning skills in practice. This can be a complex proposition for students in practice situations, particularly as the degree of uncertainty or decision complexity increases [6-7]. The ‘think aloud’ approach is an innovative learning/teaching method which can create an environment suitable for developing clinical reasoning skills in students [4, 8]. This project aims to use the ‘think aloud’ strategy within a simulation context to provide a safe learning environment in which third year students are assisted to uncover cognitive approaches that best assist them to make effective patient care decisions, and improve their confidence, clinical reasoning and active critical reflection on their practice. MEHODS In semester 2 2011 at QUT, third year nursing students will undertake high fidelity simulation, some for the first time commencing in September of 2011. There will be two cohorts for strategy implementation (group 1= use think aloud as a strategy within the simulation, group 2= not given a specific strategy outside of nursing assessment frameworks) in relation to problem solving patient needs. Students will be briefed about the scenario, given a nursing handover, placed into a simulation group and an observer group, and the facilitator/teacher will run the simulation from a control room, and not have contact (as a ‘teacher’) with students during the simulation. Then debriefing will occur as a whole group outside of the simulation room where the session can be reviewed on screen. The think aloud strategy will be described to students in their pre-simulation briefing and allow for clarification of this strategy at this time. All other aspects of the simulations remain the same, (resources, suggested nursing assessment frameworks, simulation session duration, size of simulation teams, preparatory materials). RESULTS Methodology of the project and the challenges of implementation will be the focus of this presentation. This will include ethical considerations in designing the project, recruitment of students and implementation of a voluntary research project within a busy educational curriculum which in third year targets 669 students over two campuses. CONCLUSIONS In an environment of increasingly constrained clinical placement opportunities, exploration of alternate strategies to improve critical thinking skills and develop clinical reasoning and problem solving for nursing students is imperative in preparing nurses to respond to changing patient needs. References 1. Lasater, K., High-fidelity simulation and the development of clinical judgement: students' experiences. Journal of Nursing Education, 2007. 46(6): p. 269-276. 2. Lapkin, S., et al., Effectiveness of patient simulation manikins in teaching clinical reasoning skills to undergraduate nursing students: a systematic review. Clinical Simulation in Nursing, 2010. 6(6): p. e207-22. 3. Kaddoura, M.P.C.M.S.N.R.N., New Graduate Nurses' Perceptions of the Effects of Clinical Simulation on Their Critical Thinking, Learning, and Confidence. The Journal of Continuing Education in Nursing, 2010. 41(11): p. 506. 4. Banning, M., The think aloud approach as an educational tool to develop and assess clinical reasoning in undergraduate students. Nurse Education Today, 2008. 28: p. 8-14. 5. Porter-O'Grady, T., Profound change:21st century nursing. Nursing Outlook, 2001. 49(4): p. 182-186. 6. Andersson, A.K., M. Omberg, and M. Svedlund, Triage in the emergency department-a qualitative study of the factors which nurses consider when making decisions. Nursing in Critical Care, 2006. 11(3): p. 136-145. 7. O'Neill, E.S., N.M. Dluhy, and C. Chin, Modelling novice clinical reasoning for a computerized decision support system. Journal of Advanced Nursing, 2005. 49(1): p. 68-77. 8. Lee, J.E. and N. Ryan-Wenger, The "Think Aloud" seminar for teaching clinical reasoning: a case study of a child with pharyngitis. J Pediatr Health Care, 1997. 11(3): p. 101-10.
Resumo:
Since 2000 there has been pressure on education systems for develop in students a number of competences that are described as generic. This pressure stems from studies of the changing nature of work in the Knowledge Society that is now so dominant. The DeSeCo project identified a number of these competences, and listed them under the headings of communicative, analytical and personal. They include thinking, creativity, communication skills, knowing how to learn, working in teams, adapting to change, and problem solving. These competences pose a substantial challenge to the manner in which education as a whole, and science education in particular, has hitherto been generally conceived. It is now common to find their importance acknowledged in new formulation of the curriculum. The paper reviews a number of these curriculum documents and how they have tried to relate these competences to the teaching and learning of Science, a subject with its own very specific content for learning. It will be suggested that the challenge provides an opportunity for a reconstruction of the teaching and learning of science in schools that will increase its effectiveness for more students.
Resumo:
Theme Paper for Curriculum innovation and enhancement theme AIM: This paper reports on a research project that trialled an educational strategy implemented in an undergraduate nursing curriculum. The project aimed to explore the effectiveness of ‘think aloud’ as a strategy for improving clinical reasoning for students in simulated clinical settings. BACKGROUND: Nurses are required to apply and utilise critical thinking skills to enable clinical reasoning and problem solving in the clinical setting (Lasater, 2007). Nursing students are expected to develop and display clinical reasoning skills in practice, but may struggle articulating reasons behind decisions about patient care. The ‘think aloud’ approach is an innovative learning/teaching method which can create an environment suitable for developing clinical reasoning skills in students (Banning, 2008, Lee and Ryan-Wenger, 1997). This project used the ‘think aloud’ strategy within a simulation context to provide a safe learning environment in which third year students were assisted to uncover cognitive approaches to assist in making effective patient care decisions, and improve their confidence, clinical reasoning and active critical reflection about their practice. MEHODS: In semester 2 2011 at QUT, third year nursing students undertook high fidelity simulation (some for the first time), commencing in September of 2011. There were two cohorts for strategy implementation (group 1= used think aloud as a strategy within the simulation, group 2= no specific strategy outside of nursing assessment frameworks used by all students) in relation to problem solving patient needs. The think aloud strategy was described to students in their pre-simulation briefing and allowed time for clarification of this strategy. All other aspects of the simulations remained the same, (resources, suggested nursing assessment frameworks, simulation session duration, size of simulation teams, preparatory materials). Ethics approval has been obtained for this project. RESULTS: Results of a qualitative analysis (in progress- will be completed by March 2012) of student and facilitator reports on students’ ability to meet the learning objectives of solving patient problems using clinical reasoning and experience with the ‘think aloud’ method will be presented. A comparison of clinical reasoning learning outcomes between the two groups will determine the effect on clinical reasoning for students responding to patient problems. CONCLUSIONS: In an environment of increasingly constrained clinical placement opportunities, exploration of alternate strategies to improve critical thinking skills and develop clinical reasoning and problem solving for nursing students is imperative in preparing nurses to respond to changing patient needs.
Resumo:
The Earth and its peoples are facing great challenges. As a species, humans are over-consuming the Earth’s resources and compromising the capacity of both natural and social systems to function in healthy and sustainable ways. Education at all levels and in all contexts, has a key role in helping societies move to more sustainable ways of living. Two areas in need of catch-up in relation to Education for Sustainable Development (ESD) are early childhood education and teacher education. Another area of challenge for ESD is the way it is currently oriented. To date, a great deal of emphasis has been placed on scientific and technological solutions to sustainability issues. This has led to an emphasis on STEM education as education’s main way of addressing sustainability. However, in this paper it is argued that sustainably is primarily a social issue that requires interdisciplinary education approaches. STEM approaches to ESD - emphasising knowledge construction and problem-solving - cannot, on their own, deal effectively with attitudes, values and actions towards more sustainable ways of living. In China and Australia, there are already policies, frameworks, guidelines and initiatives, such as Green Schools and Sustainable Schools that support such forms of ESD. STEM educators need to reach out to social scientists and social educators in order to more fully engage with activist and collaborative educational responses that equip learners with the knowledge, dispositions and capacities to ‘make a difference’.
Resumo:
Organizations invest in ways to stimulate new ideas for new products and services for the benefit of the organization, engaging in tournaments and competitions to generate new ideas or to combine existing ideas in new ways for new products and services (Terweisch and Uhlrich, 2009). Specifically, some large companies have developed platforms for posting intractable problems to tap into the ideas and problem solving abilities of a broader range of people (Huston and Sakkab, 2006; Morgan and Wang, 2010), and to develop new and elegant solutions often in an open innovation approach (Chesbrough, 2003). The notion of ingenuity is often applied to individuals who create innovative solutions in situations of constraint, where ingenuity in the form of elegant solutions can be understood as one form of resourcefulness (Young, 2011). However, the notion of organizational ingenuity locates ingenuity more centrally to an organization's strategic decision making and implementation, embedding ingenuity into the company's culture. Studies of organizations displaying ingenuity indicate a range of possibilities from extreme ingenuity (Baker and Nelson, 2005) to less dramatic but substantial changes (Thomke, 2003), sometimes in an experimental phase or as part of a move towards a new and distinct identity for ongoing innovation.
Resumo:
Paediatric Nursing in Australia equips students with the essential skills and knowledge to become paediatric, child and youth health nurses across a variety of clinical and community settings. It prepares students for critical thinking and problem solving within this field by emphasising contemporary issues impacting on the health of children, young people and their families. Written by a team of experienced paediatric nurses, the content is based on themes that align with Australian standards of competence and expectations of paediatric nursing: communication, family involvement and evidence-based practice. Comprehensive yet concise, the text examines the integration of theoretical and clinical components of nursing knowledge. To enhance learning, chapters feature case studies, reflection points and learning activities. An essential resource for nursing students, this text is grounded in current care delivery and professional issues for care of the child to prepare future nurses for evidence-based practice in paediatric settings throughout Australia. • Prepares students for critical thinking and problem solving within paediatric, child and youth health nursing by emphasising contemporary issues that impact on the health of children and young people and their families • Written by a team of experienced paediatric nurses • Enhances learning by providing illustrative case studies, reflection points and learning activities in each chapter
Resumo:
Final report for the Australian Government Office for Learning and Teaching. "This seed project ‘Design thinking frameworks as transformative cross-disciplinary pedagogy’ aimed to examine the way design thinking strategies are used across disciplines to scaffold the development of student attributes in the domain of problem solving and creativity in order to enhance the nation’s capacity for innovation. Generic graduate attributes associated with innovation, creativity and problem solving are considered to be amongst the most important of all targeted attributes (Bradley Review of Higher Education, 2009). The project also aimed to gather data on how academics across disciplines conceptualised design thinking methodologies and strategies. Insights into how design thinking strategies could be embedded at the subject level to improve student outcomes were of particular interest in this regard. A related aim was the investigation of how design thinking strategies could be used by academics when designing new and innovative subjects and courses." Case Study 3: QUT Community Engaged Learning Lab Design Thinking/Design Led Innovation Workshop by Natalie Wright Context "The author, from the discipline area of Interior Design in the QUT School of Design, Faculty of Creative Industries, is a contributing academic and tutor for The Community Engaged Learning Lab, which was initiated at Queensland University of Technology in 2012. The Lab facilitates university-wide service-learning experiences and engages students, academics, and key community organisations in interdisciplinary action research projects to support student learning and to explore complex and ongoing problems nominated by the community partners. In Week 3, Semester One 2013, with the assistance of co-lead Dr Cara Wrigley, Senior Lecturer in Design led Innovation, a Masters of Architecture research student and nine participating industry-embedded Masters of Research (Design led Innovation) facilitators, a Design Thinking/Design led Innovation workshop was conducted for the Community Engaged Learning Lab students, and action research outcomes published at 2013 Tsinghua International Design Management Symposium, December 2013 in Shenzhen, China (Morehen, Wright, & Wrigley, 2013)."
Resumo:
Game playing contributes to the acquisition of required skills and competencies whilst supporting collaboration, communication and problem solving. This project introduced the board game Monopoly CityTM to tie theoretical class room learning with collaborative, play based problem solving.
Resumo:
Background Comparison of a multimodal intervention WE CALL (study initiated phone support/information provision) versus a passive intervention YOU CALL (participant can contact a resource person) in individuals with first mild stroke. Methods and Results This study is a single-blinded randomized clinical trial. Primary outcome includes unplanned use of health services (participant diaries) for adverse events and quality of life (Euroquol-5D, Quality of Life Index). Secondary outcomes include planned use of health services (diaries), mood (Beck Depression Inventory II), and participation (Assessment of Life Habits [LIFE-H]). Blind assessments were done at baseline, 6, and 12 months. A mixed model approach for statistical analysis on an intention-to-treat basis was used where the group factor was intervention type and occasion factor time, with a significance level of 0.01. We enrolled 186 patients (WE=92; YOU=94) with a mean age of 62.5±12.5 years, and 42.5% were women. No significant differences were seen between groups at 6 months for any outcomes with both groups improving from baseline on all measures (effect sizes ranged from 0.25 to 0.7). The only significant change for both groups from 6 months to 1 year (n=139) was in the social domains of the LIFE-H (increment in score, 0.4/9±1.3 [95% confidence interval, 0.1–0.7]; effect size, 0.3). Qualitatively, the WE CALL intervention was perceived as reassuring, increased insight, and problem solving while decreasing anxiety. Only 6 of 94 (6.4%) YOU CALL participants availed themselves of the intervention. Conclusions Although the 2 groups improved equally over time, WE CALL intervention was perceived as helpful, whereas YOU CALL intervention was not used.
Resumo:
Background More than 60% of new strokes each year are "mild" in severity and this proportion is expected to rise in the years to come. Within our current health care system those with "mild" stroke are typically discharged home within days, without further referral to health or rehabilitation services other than advice to see their family physician. Those with mild stroke often have limited access to support from health professionals with stroke-specific knowledge who would typically provide critical information on topics such as secondary stroke prevention, community reintegration, medication counselling and problem solving with regard to specific concerns that arise. Isolation and lack of knowledge may lead to a worsening of health problems including stroke recurrence and unnecessary and costly health care utilization. The purpose of this study is to assess the effectiveness, for individuals who experience a first "mild" stroke, of a sustainable, low cost, multimodal support intervention (comprising information, education and telephone support) - "WE CALL" compared to a passive intervention (providing the name and phone number of a resource person available if they feel the need to) - "YOU CALL", on two primary outcomes: unplanned-use of health services for negative events and quality of life. Method/Design We will recruit 384 adults who meet inclusion criteria for a first mild stroke across six Canadian sites. Baseline measures will be taken within the first month after stroke onset. Participants will be stratified according to comorbidity level and randomised to one of two groups: YOU CALL or WE CALL. Both interventions will be offered over a six months period. Primary outcomes include unplanned use of heath services for negative event (frequency calendar) and quality of life (EQ-5D and Quality of Life Index). Secondary outcomes include participation level (LIFE-H), depression (Beck Depression Inventory II) and use of health services for health promotion or prevention (frequency calendar). Blind assessors will gather data at mid-intervention, end of intervention and one year follow up. Discussion If effective, this multimodal intervention could be delivered in both urban and rural environments. For example, existing infrastructure such as regional stroke centers and existing secondary stroke prevention clinics, make this intervention, if effective, deliverable and sustainable.
Resumo:
Exercise science is now an integral part of the allied health framework in Australia and graduates from accredited programmes are equipped with skills recognised as being important in the prevention and management of lifestyle-related diseases. This pilot study sought to determine the experiences of 11 final-year exercise science students in their major practicum and identify skills learned and developed while on placement. Analysis of the interview data established that the students worked with clients from a broad range of sociocultural and socioeconomic backgrounds, both within and between practicum sites; the students’ experiences and their preparedness to engage with clients from different backgrounds varied as a result. Although the students generally reported being technically skilled for their major placement, many reported being underprepared to deal with people from different backgrounds. However, all participants held that their interpersonal skills greatly improved in response to their placement and several remarked that they developed their problem-solving skills through watching and assisting their supervisors work with clients. The present study confirms the practicum as a critical learning site for improving communication and problem-solving skills with exercise science and exercise physiology students.
Resumo:
Early childhood teacher education programs have a responsibility, amongst many, to prepare teachers for decision-making on real world issues, such as child abuse and neglect. Their repertoire of skills can be enhanced by engaging with others, either face-to-face or online, in authentic problem-based learning. This paper draws on a study of early childhood student teachers who engaged in an authentic learning experience, which was to consider and to suggest how they would act upon a real-life case of child abuse encountered in an early childhood classroom in Queensland. This was the case of Toby (a pseudonym), who was suspected of being physically abused at home. Students drew upon relevant legislation, policy and resource materials to tackle Toby’s case. The paper provides evidence of students grappling with the complexity of a child abuse case and establishing, through collaboration with others, a proactive course of action. The paper has a dual focus. First, it discusses the pedagogical context in which early childhood student teachers deal with issues of child abuse and neglect in the course of their teacher education program. Second, it examines evidence of students engaging in collaborative problem-solving around issues of child abuse and neglect and teachers’ responsibilities, both legal and professional, to the children and families they work with. Early childhood policy-makers, practitioners and teacher educators are challenged to consider how early childhood teachers are best equipped to deal with child protection and early intervention.
Resumo:
A forced landing is an unscheduled event in flight requiring an emergency landing, and is most commonly attributed to engine failure, failure of avionics or adverse weather. Since the ability to conduct a successful forced landing is the primary indicator for safety in the aviation industry, automating this capability for unmanned aerial vehicles (UAVs) will help facilitate their integration into, and subsequent routine operations over civilian airspace. Currently, there is no commercial system available to perform this task; however, a team at the Australian Research Centre for Aerospace Automation (ARCAA) is working towards developing such an automated forced landing system. This system, codenamed Flight Guardian, will operate onboard the aircraft and use machine vision for site identification, artificial intelligence for data assessment and evaluation, and path planning, guidance and control techniques to actualize the landing. This thesis focuses on research specific to the third category, and presents the design, testing and evaluation of a Trajectory Generation and Guidance System (TGGS) that navigates the aircraft to land at a chosen site, following an engine failure. Firstly, two algorithms are developed that adapts manned aircraft forced landing techniques to suit the UAV planning problem. Algorithm 1 allows the UAV to select a route (from a library) based on a fixed glide range and the ambient wind conditions, while Algorithm 2 uses a series of adjustable waypoints to cater for changing winds. A comparison of both algorithms in over 200 simulated forced landings found that using Algorithm 2, twice as many landings were within the designated area, with an average lateral miss distance of 200 m at the aimpoint. These results present a baseline for further refinements to the planning algorithms. A significant contribution is seen in the design of the 3-D Dubins Curves planning algorithm, which extends the elementary concepts underlying 2-D Dubins paths to account for powerless flight in three dimensions. This has also resulted in the development of new methods in testing for path traversability, in losing excess altitude, and in the actual path formation to ensure aircraft stability. Simulations using this algorithm have demonstrated lateral and vertical miss distances of under 20 m at the approach point, in wind speeds of up to 9 m/s. This is greater than a tenfold improvement on Algorithm 2 and emulates the performance of manned, powered aircraft. The lateral guidance algorithm originally developed by Park, Deyst, and How (2007) is enhanced to include wind information in the guidance logic. A simple assumption is also made that reduces the complexity of the algorithm in following a circular path, yet without sacrificing performance. Finally, a specific method of supplying the correct turning direction is also used. Simulations have shown that this new algorithm, named the Enhanced Nonlinear Guidance (ENG) algorithm, performs much better in changing winds, with cross-track errors at the approach point within 2 m, compared to over 10 m using Park's algorithm. A fourth contribution is made in designing the Flight Path Following Guidance (FPFG) algorithm, which uses path angle calculations and the MacCready theory to determine the optimal speed to fly in winds. This algorithm also uses proportional integral- derivative (PID) gain schedules to finely tune the tracking accuracies, and has demonstrated in simulation vertical miss distances of under 2 m in changing winds. A fifth contribution is made in designing the Modified Proportional Navigation (MPN) algorithm, which uses principles from proportional navigation and the ENG algorithm, as well as methods specifically its own, to calculate the required pitch to fly. This algorithm is robust to wind changes, and is easily adaptable to any aircraft type. Tracking accuracies obtained with this algorithm are also comparable to those obtained using the FPFG algorithm. For all three preceding guidance algorithms, a novel method utilising the geometric and time relationship between aircraft and path is also employed to ensure that the aircraft is still able to track the desired path to completion in strong winds, while remaining stabilised. Finally, a derived contribution is made in modifying the 3-D Dubins Curves algorithm to suit helicopter flight dynamics. This modification allows a helicopter to autonomously track both stationary and moving targets in flight, and is highly advantageous for applications such as traffic surveillance, police pursuit, security or payload delivery. Each of these achievements serves to enhance the on-board autonomy and safety of a UAV, which in turn will help facilitate the integration of UAVs into civilian airspace for a wider appreciation of the good that they can provide. The automated UAV forced landing planning and guidance strategies presented in this thesis will allow the progression of this technology from the design and developmental stages, through to a prototype system that can demonstrate its effectiveness to the UAV research and operations community.
Resumo:
This study investigated how the interpretation of mathematical problems by Year 7 students impacted on their ability to demonstrate what they can do in NAPLAN numeracy testing. In the study, mathematics is viewed as a culturally and socially determined system of signs and signifiers that establish the meaning, origins and importance of mathematics. The study hypothesises that students are unable to succeed in NAPLAN numeracy tests because they cannot interpret the questions, even though they may be able to perform the necessary calculations. To investigate this, the study applied contemporary theories of literacy to the context of mathematical problem solving. A case study design with multiple methods was used. The study used a correlation design to explore the connections between NAPLAN literacy and numeracy outcomes of 198 Year 7 students in a Queensland school. Additionally, qualitative methods provided a rich description of the effect of the various forms of NAPLAN numeracy questions on the success of ten Year 7 students in the same school. The study argues that there is a quantitative link between reading and numeracy. It illustrates that interpretation (literacy) errors are the most common error type in the selected NAPLAN questions, made by students of all abilities. In contrast, conceptual (mathematical) errors are less frequent amongst more capable students. This has important implications in preparing students for NAPLAN numeracy tests. The study concluded by recommending that increased focus on the literacies of mathematics would be effective in improving NAPLAN results.
Resumo:
High fidelity simulation as a teaching and learning approach is being embraced by many schools of nursing. Our school embarked on integrating high fidelity (HF) simulation into the undergraduate clinical education program in 2011. Low and medium fidelity simulation has been used for many years, but this did not simplify the integration of HF simulation. Alongside considerations of how and where HF simulation would be integrated, issues arose with: student consent and participation for observed activities; data management of video files; staff development, and conceptualising how methods for student learning could be researched. Simulation for undergraduate student nurses commenced as a formative learning activity, undertaken in groups of eight, where four students undertake the ‘doing’ role and four are structured observers, who then take a formal role in the simulation debrief. Challenges for integrating simulation into student learning included conceptualising and developing scenarios to trigger students’ decision making and application of skills, knowledge and attitudes explicit to solving clinical ‘problems’. Developing and planning scenarios for students to ‘try out’ skills and make decisions for problem solving lay beyond choosing pre-existing scenarios inbuilt with the software. The supplied scenarios were not concept based but rather knowledge, skills and technology (of the manikin) focussed. Challenges lay in using the technology for the purpose of building conceptual mastery rather than using technology simply because it was available. As we integrated use of HF simulation into the final year of the program, focus was on building skills, knowledge and attitudes that went beyond technical skill, and provided an opportunity to bridge the gap with theory-based knowledge that students often found difficult to link to clinical reality. We wished to provide opportunities to develop experiential knowledge based on application and clinical reasoning processes in team environments where problems are encountered, and to solve them, the nurse must show leadership and direction. Other challenges included students consenting for simulations to be videotaped and ethical considerations of this. For example if one student in a group of eight did not consent, did this mean they missed the opportunity to undertake simulation, or that others in the group may be disadvantaged by being unable to review their performance. This has implications for freely given consent but also for equity of access to learning opportunities for students who wished to be taped and those who did not. Alongside this issue were the details behind data management, storage and access. Developing staff with varying levels of computer skills to use software and undertake a different approach to being the ‘teacher’ required innovation where we took an experiential approach. Considering explicit learning approaches to be trialled for learning was not a difficult proposition, but considering how to enact this as research with issues of blinding, timetabling of blinded groups, and reducing bias for testing results of different learning approaches along with gaining ethical approval was problematic. This presentation presents examples of these challenges and how we overcame them.