245 resultados para 1995_07191343 TM-5 4900402
Resumo:
The presence of arsenic in the environment is a hazard. The accumulation of arsenate by a range of cations in the formation of minerals provides a mechanism for the remediation of arsenate contamination. The formation of the crandallite group of minerals provides a mechanism for arsenate accumulation. Among the crandallite minerals are philipsbornite, arsenocrandallite and arsenogoyazite. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of philipsbornite to be studied. The Raman spectrum of philipsbornite displays an intense band at around 840 cm−1 attributed to the overlap of the symmetric and antisymmetric stretching modes. Raman bands observed at 325, 336, 347, 357, 376 and 399 cm−1 are assigned to the ν2 (AsO4)3− symmetric bending vibration (E) and to the ν4 bending vibration (F2). The observation of multiple bending modes supports the concept of a reduction in symmetry of the arsenate anion in philipsbornite. Evidence for phosphate in the mineral is provided. By using an empirical formula, hydrogen bond distances for the OH units in philipsbornite of 2.8648 Å, 2.7864 Å, 2.6896 Å cm−1 and 2.6220 were calculated.
Resumo:
In the structure of the title compound, [Mg(C7H3N2O6)2(H2O)4] . 4H2O), the slightly distorted octahedral MgO6 coordination polyhedron comprises two trans-related carboxyl O-atom donors from mononodentate 3,5-dinitrobenzoate ligands, and four water molecules. The coordinated water molecules and the four water molecules of solvation give both intra- and inter-unit O-H...O hydrogen-bonding interactions with carboxyl, water and nitro O-atom acceptors, giving a three-dimensional structure.
Resumo:
This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.
Resumo:
We have analyzed a frondelite mineral sample from the Cigana mine, located in the municipality of Conselheiro Pena, a well-known pegmatite in Brazil. In the Cigana pegmatite, secondary phosphates, namely eosphorite, fairfieldite, fluorapatite, frondelite, gormanite, hureaulite, lithiophilite, reddingite and vivianite are common minerals in miarolitic cavities and in massive blocks after triphylite. The chemical formula was determined as (Mn0.68, Fe0.32)(Fe3+)3,72(PO4)3.17(OH)4.99. The structure of the mineral was assessed using vibrational spectroscopy. Bands attributed to the stretching and bending modes of PO4 3- and HOPO3 3- units were identified. The observation of multiple bands supports the concept of symmetry reduction of the phosphate anion in the frondelite structure. Sharp Raman and infrared bands at 3581 cm−1 is assigned to the OH stretching vibration. Broad Raman bands at 3063, 3529 and 3365 cm−1 are attributed to water stretching vibrational modes.
Resumo:
The structures of two ammonium salts of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) have been determined at 200 K. In the 1:1 hydrated salt, ammonium 3-carboxy-4-hydroxybenzenesulfonate monohydrate, NH4+·C7H5O6S-·H2O, (I), the 5-SSA- monoanions give two types of head-to-tail laterally linked cyclic hydrogen-bonding associations, both with graph-set R44(20). The first involves both carboxylic acid O-HOwater and water O-HOsulfonate hydrogen bonds at one end, and ammonium N-HOsulfonate and N-HOcarboxy hydrogen bonds at the other. The second association is centrosymmetric, with end linkages through water O-HOsulfonate hydrogen bonds. These conjoined units form stacks down c and are extended into a three-dimensional framework structure through N-HO and water O-HO hydrogen bonds to sulfonate O-atom acceptors. Anhydrous triammonium 3-carboxy-4-hydroxybenzenesulfonate 3-carboxylato-4-hydroxybenzenesulfonate, 3NH4+·C7H4O6S2-·C7H5O6S-, (II), is unusual, having both dianionic 5-SSA2- and monoanionic 5-SSA- species. These are linked by a carboxylic acid O-HO hydrogen bond and, together with the three ammonium cations (two on general sites and the third comprising two independent half-cations lying on crystallographic twofold rotation axes), give a pseudo-centrosymmetric asymmetric unit. Cation-anion hydrogen bonding within this layered unit involves a cyclic R33(8) association which, together with extensive peripheral N-HO hydrogen bonding involving both sulfonate and carboxy/carboxylate acceptors, gives a three-dimensional framework structure. This work further demonstrates the utility of the 5-SSA- monoanion for the generation of stable hydrogen-bonded crystalline materials, and provides the structure of a dianionic 5-SSA2- species of which there are only a few examples in the crystallographic literature.
Resumo:
The structures of the anhydrous proton-transfer compounds of the sulfa drug sulfamethazine with 5-nitrosalicylic acid and picric acid, namely 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2-hydroxy-5-nitrobenzoate, C12H15N4O2S(+)·C7H4NO4(-), (I), and 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2,4,6-trinitrophenolate, C12H15N4O2S(+)·C6H2N3O7(-), (II), respectively, have been determined. In the asymmetric unit of (I), there are two independent but conformationally similar cation-anion heterodimer pairs which are formed through duplex intermolecular N(+)-H...Ocarboxylate and N-H...Ocarboxylate hydrogen-bond pairs, giving a cyclic motif [graph set R2(2)(8)]. These heterodimers form separate and different non-associated substructures through aniline N-H...O hydrogen bonds, one one-dimensional, involving carboxylate O-atom acceptors, the other two-dimensional, involving both carboxylate and hydroxy O-atom acceptors. The overall two-dimensional structure is stabilized by π-π interactions between the pyrimidinium ring and the 5-nitrosalicylate ring in both heterodimers [minimum ring-centroid separation = 3.4580 (8) Å]. For picrate (II), the cation-anion interaction involves a slightly asymmetric chelating N-H...O R2(1)(6) hydrogen-bonding association with the phenolate O atom, together with peripheral conjoint R1(2)(6) interactions between the same N-H groups and O atoms of the ortho-related nitro groups. An inter-unit amine N-H...Osulfone hydrogen bond gives one-dimensional chains which extend along a and inter-associate through π-π interactions between the pyrimidinium rings [centroid-centroid separation = 3.4752 (9) Å]. The two structures reported here now bring to a total of four the crystallographically characterized examples of proton-transfer salts of sulfamethazine with strong organic acids.
Resumo:
Urban maps discusses new ways and tools to read and navigate the contemporary city. Each chapter investigates a possible approach to unravel the complexity of contemporary urban forms. Each tool is first defined, introducing its philosophical background, and is then discussed with case studies, showing its relevance for the navigation of the built environment. Urbanism classics such as the work of Lynch, Jacobs, Venuti and Scott-Brown, Lefebrve and Walter Benjamin are fundamental in setting the framework of the volume. In the introduction cities and mapping are first discussed, the former are illustrated as ‘a composite of invisible networks devoid of landmarks and overrun by nodes’ (p. 3), and ‘a series of unbounded spaces where mass production and mass consumption reproduce a standardised quasi-global culture’ (p. 6).
Resumo:
Recent evidence has linked induced abortion with later adverse psychiatric outcomes in young women. Little is known about later adverse psychiatric outcomes in young men whose partners have fallen pregnant and either go on to have a child, have an abortion or miscarry. 1223 women and 1159 men, from an Austrailan cohort born between 1981 and 1984, were assessed at 21 years for psychiatric and substance misuse and lifetime pregnancy histories. Young women reporting a pregnancy loss (either miscarriage or abortion) had nearly three times the odds of experiencing a illicit drug disorder (excluding cannabis), and nearly twice the odds of an alcohol misuse compared to never pregnant women. Young men whose partner had an abortion, but not a miscarriage, had nearly twice the odds of cannabis disorder, illicit drug disorder, and mood disorder compared to men that had never fathered a pregnancy. Young women who have lost a pregnancy have an increased risk of developing alcohol or substance abuse in later life. Young men whose partner aborted a pregnancy only had an increased of substance abuse and mood disorder in later life. These findings add to the growing body of evidence suggesting that pregnancy loss per se increases the risk of a range of substance use disorders in young women. The findings for young men are novel and raise the possibility that the associations measured may be due to common unmeasured factors associated with early pregnancy in young people rather than pregnancy loss.
Resumo:
Vibrational spectroscopy has been used to characterize the sulphate mineral khademite Al(SO4)F∙5(H2O). Raman band at 991 cm-1 with a shoulder at 975 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode. The observation of two symmetric stretching modes suggests that the sulphate units are not equivalent. Two low intensity Raman bands at 1104 and 1132 cm-1 are assigned to the ν3 (SO4)2- antisymmetric stretching mode. The broad Raman band at 618 cm-1 is assigned to the v4 (SO4)2- bending modes. Raman bands at 455, 505 and 534 cm-1 are attributable to the doubly degenerate v2 (SO4)2- bending modes. Raman bands at 2991, 3146 and 3380 cm-1 are assigned to the OH stretching bands of water. Five infrared bands are noted at 2458, 2896, 3203, 3348 and 3489 cm-1 are also due to water stretching bands. The observation of multiple water stretching vibrations gives credence to the non-equivalence of water units in the khademite structure. Vibrational spectroscopy enables an assessment of the structure of khademite.
Resumo:
Dedicated Short Range Communication (DSRC) is the emerging key technology supporting cooperative road safety systems within Intelligent Transportation Systems (ITS). The DSRC protocol stack includes a variety of standards such as IEEE 802.11p and SAE J2735. The effectiveness of the DSRC technology depends on not only the interoperable cooperation of these standards, but also on the interoperability of DSRC devices manufactured by various manufacturers. To address the second constraint, the SAE defines a message set dictionary under the J2735 standard for construction of device independent messages. This paper focuses on the deficiencies of the SAE J2735 standard being developed for deployment in Vehicular Ad-hoc Networks (VANET). In this regard, the paper discusses the way how a Basic Safety Message (BSM) as the fundamental message type defined in SAE J2735 is constructed, sent and received by safety communication platforms to provide a comprehensive device independent solution for Cooperative ITS (C-ITS). This provides some insight into the technical knowledge behind the construction and exchange of BSMs within VANET. A series of real-world DSRC data collection experiments was conducted. The results demonstrate that the reliability and throughput of DSRC highly depend on the applications utilizing the medium. Therefore, an active application-dependent medium control measure, using a novel message-dissemination frequency controller, is introduced. This application level message handler improves the reliability of both BSM transmissions/receptions and the Application layer error handling which is extremely vital to decentralized congestion control (DCC) mechanisms.
Resumo:
Vehicular accidents are one of the deadliest safety hazards and accordingly an immense concern of individuals and governments. Although, a wide range of active autonomous safety systems, such as advanced driving assistance and lane keeping support, are introduced to facilitate safer driving experience, these stand-alone systems have limited capabilities in providing safety. Therefore, cooperative vehicular systems were proposed to fulfill more safety requirements. Most cooperative vehicle-to-vehicle safety applications require relative positioning accuracy of decimeter level with an update rate of at least 10 Hz. These requirements cannot be met via direct navigation or differential positioning techniques. This paper studies a cooperative vehicle platform that aims to facilitate real-time relative positioning (RRP) among adjacent vehicles. The developed system is capable of exchanging both GPS position solutions and raw observations using RTCM-104 format over vehicular dedicated short range communication (DSRC) links. Real-time kinematic (RTK) positioning technique is integrated into the system to enable RRP to be served as an embedded real-time warning system. The 5.9 GHz DSRC technology is adopted as the communication channel among road-side units (RSUs) and on-board units (OBUs) to distribute GPS corrections data received from a nearby reference station via the Internet using cellular technologies, by means of RSUs, as well as to exchange the vehicular real-time GPS raw observation data. Ultimately, each receiving vehicle calculates relative positions of its neighbors to attain a RRP map. A series of real-world data collection experiments was conducted to explore the synergies of both DSRC and positioning systems. The results demonstrate a significant enhancement in precision and availability of relative positioning at mobile vehicles.
Resumo:
The structures of the anhydrous products from the interaction of 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazole with (2-naphthoxy)acetic acid, the 1:1 adduct C8H6BrN3S . C12H10O3 (I) and 3,5-dinitrobenzoic acid, the salt C8H7BrN3S+ C7H3N2O6- (II) have been determined. In the adduct (I), a heterodimer is formed through a cyclic hydrogen-bonding motif [graph set R2/2(8)], involving carboxylic acid O-H...N(hetero)and amine N-H...O(carboxyl) interactions. The heterodimers are essentially planar with a thiadiazole to naphthyl ring dihedral angle of 15.9(2)deg. and the intramolecular thiadiazole to phenyl ring angle of 4.7(2)deg. An amine N-H...N(hetero) hydrogen bond between the heterodimers generates a one-dimensional chain structure extending down [001]. Also present are weak benzene-benzene and naphthalene-naphthalene pi-pi stacking interactions down the b axis [minimum ring centroid separation, 3.936(3) Ang.]. With the salt (II), the cation-anion association is also through a cyclic R2/2(8) motif but involving duplex N-H...O(carboxyl) hydrogen bonds, giving a heterodimer which is close to planar [dihedral angles between the thiadiazole ring and the two benzene rings, 5.00(16)deg. (intra) and 7.23(15)deg. (inter)]. A secondary centrosymmetric cyclic N-H...O(carboxyl) hydrogen-bonding association involving the second amino H-atom generates a heterotetramer. Also present in the crystal are weak pi-pi i-\p interactions between thiadiazolium rings [minimum ring centroid separation, 3.936(3)Ang.], as well as a short Br...O(nitro) interaction [3.314(4)Ang.]. The two structures reported here now provide a total of three crystallographically characterized examples of co-crystalline products from the interaction of 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazole with carboxylic acids, of which only one involves proton-transfer.
Resumo:
The mineral natrodufrénite a secondary pegmatite phosphate mineral from Minas Gerais, Brazil, has been studied by a combination of scanning electron microscopy and vibrational spectroscopic techniques. Electron probe analysis shows the formula of the studied mineral as (Na0.88Ca0.12)∑1.00(Mn0.11Mg0.08Ca0.04Zr0.01Cu0.01)∑0.97(Al0.02)∑4.91(PO4)3.96(OH6.15F0.07)6.22⋅2.05(H2O). Raman spectroscopy identifies an intense peak at 1003 cm−1 assigned to the ν1 symmetric stretching mode. Raman bands are observed at 1059 and 1118 cm−1 and are attributed to the ν3 antisymmetric stretching vibrations. A comparison is made with the spectral data of other hydrate hydroxy phosphate minerals including cyrilovite and wardite. Raman bands at 560, 582, 619 and 668 cm−1 are assigned to the ν4 bending modes and Raman bands at 425, 444, 477 and 507 cm−1 are due to the ν2 bending modes. Raman bands in the 2600–3800 cm−1 spectral range are attributed to water and OH stretching vibrations. Vibrational spectroscopy enables aspects of the molecular structure of natrodufrénite to be assessed.
Resumo:
Chlamydia trachomatis is a bacterial pathogen responsible for one of the most prevalent sexually transmitted infections worldwide. Its unique development cycle has limited our understanding of its pathogenic mechanisms. However, CtHtrA has recently been identified as a potential C. trachomatis virulence factor. CtHtrA is a tightly regulated quality control protein with a monomeric structural unit comprised of a chymotrypsin-like protease domain and two PDZ domains. Activation of proteolytic activity relies on the C-terminus of the substrate allosterically binding to the PDZ1 domain, which triggers subsequent conformational change and oligomerization of the protein into 24-mers enabling proteolysis. This activation is mediated by a cascade of precise structural arrangements, but the specific CtHtrA residues and structural elements required to facilitate activation are unknown. Using in vitro analysis guided by homology modeling, we show that the mutation of residues Arg362 and Arg224, predicted to disrupt the interaction between the CtHtrA PDZ1 domain and loop L3, and between loop L3 and loop LD, respectively, are critical for the activation of proteolytic activity. We also demonstrate that mutation to residues Arg299 and Lys160, predicted to disrupt PDZ1 domain interactions with protease loop LC and strand β5, are also able to influence proteolysis, implying their involvement in the CtHtrA mechanism of activation. This is the first investigation of protease loop LC and strand β5 with respect to their potential interactions with the PDZ1 domain. Given their high level of conservation in bacterial HtrA, these structural elements may be equally significant in the activation mechanism of DegP and other HtrA family members.