419 resultados para water source
Resumo:
The central aim for the research undertaken in this PhD thesis is the development of a model for simulating water droplet movement on a leaf surface and to compare the model behavior with experimental observations. A series of five papers has been presented to explain systematically the way in which this droplet modelling work has been realised. Knowing the path of the droplet on the leaf surface is important for understanding how a droplet of water, pesticide, or nutrient will be absorbed through the leaf surface. An important aspect of the research is the generation of a leaf surface representation that acts as the foundation of the droplet model. Initially a laser scanner is used to capture the surface characteristics for two types of leaves in the form of a large scattered data set. After the identification of the leaf surface boundary, a set of internal points is chosen over which a triangulation of the surface is constructed. We present a novel hybrid approach for leaf surface fitting on this triangulation that combines Clough-Tocher (CT) and radial basis function (RBF) methods to achieve a surface with a continuously turning normal. The accuracy of the hybrid technique is assessed using numerical experimentation. The hybrid CT-RBF method is shown to give good representations of Frangipani and Anthurium leaves. Such leaf models facilitate an understanding of plant development and permit the modelling of the interaction of plants with their environment. The motion of a droplet traversing this virtual leaf surface is affected by various forces including gravity, friction and resistance between the surface and the droplet. The innovation of our model is the use of thin-film theory in the context of droplet movement to determine the thickness of the droplet as it moves on the surface. Experimental verification shows that the droplet model captures reality quite well and produces realistic droplet motion on the leaf surface. Most importantly, we observed that the simulated droplet motion follows the contours of the surface and spreads as a thin film. In the future, the model may be applied to determine the path of a droplet of pesticide along a leaf surface before it falls from or comes to a standstill on the surface. It will also be used to study the paths of many droplets of water or pesticide moving and colliding on the surface.
Resumo:
Titanate nanofibers with two formulas, Na2Ti3O7 and Na1.5H0.5Ti3O7, respectively, exhibit ideal properties for removal of radioactive and heavy metal ions in wastewater, such as Sr2+ , Ba2+ (as substitute of 226Ra2+), and Pb2+ ions. These nanofibers can be fabricated readily by a reaction between titania and caustic soda and have structures in which TiO6 octahedra join each other to form layers with negative charges; the sodium cations exist within the interlayer regions and are exchangeable. They can selectively adsorb the bivalent radioactive ions and heavy metal ions from water through ion exchange process. More importantly, such sorption finally induces considerable deformation of the layer structure, resulting in permanent entrapment of the toxic bivalent cations in the fibers so that the toxic ions can be safely deposited. This study highlights that nanoparticles of inorganic ion exchangers with layered structure are potential materials for efficient removal of the toxic ions from contaminated water.
Resumo:
In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and Gr¨unwald-Letnikov(GL) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
This paper presents the possibility of utilizing a current source topology instead of a voltage source as an efficient, flexible and reliable power supply for plasma applications. A buck-boost converter with a current controller has been used to transfer energy from an inductor to a plasma system. A control strategy has also been designed to satisfy all the desired purposes. The main concept behind this topology is to provide high dv/dt regardless of the switching speed of a power switch and to control the current level to properly transfer adequate energy to various plasma applications.
Resumo:
Problem-based learning (PBL) is a pedagogical methodology that presents the learner with a problem to be solved to stimulate and situate learning. This paper presents key characteristics of a problem-based learning environment that determines its suitability as a data source for workrelated research studies. To date, little has been written about the availability and validity of PBL environments as a data source and its suitability for work-related research. We describe problembased learning and use a research project case study to illustrate the challenges associated with industry work samples. We then describe the PBL course used in our research case study and use this example to illustrate the key attributes of problem-based learning environments and show how the chosen PBL environment met the work-related research requirements of the research case study. We propose that the more realistic the PBL work context and work group composition, the better the PBL environment as a data source for a work-related research. The work context is more realistic when relevant and complex project-based problems are tackled in industry-like work conditions over longer time frames. Work group composition is more realistic when participants with industry-level education and experience enact specialized roles in different disciplines within a professional community.
Resumo:
This thesis describes outcomes of a research study conducted to investigate the nutrient build-up and wash-off processes on urban impervious surfaces. The data needed for the study was generated through a series of field investigations and laboratory test procedures. The study sites were selected in urbanised catchments to represent typical characteristics of residential, industrial and commercial land uses. The build-up and wash-off samples were collected from road surfaces in the selected study sites. A specially designed vacuum collection system and a rainfall simulator were used for sample collection. According to the data analysis, the solids build-up on road surfaces was significantly finer with more than 80% of the particles below 150 ìm for all the land uses. Nutrients were mostly associated with the particle size range below 150 ìm in both build-up and wash-off samples irrespective of type of land use. Therefore, the finer fraction of solids was the most important for the nutrient build-up and particulate nutrient wash-off processes. Consequently, the design of stormwater quality mitigation measures should target particles less than 150 ìm for the removal of nutrients irrespective of type of land use. Total kjeldahl nitrogen (TKN) was the most dominant form of nitrogen species in build-up on road surfaces. Phosphorus build-up on road surfaces was mainly in inorganic form and phosphate (PO4 3-) was the most dominant form. The nutrient wash-off process was found to be dependent on rainfall intensity and duration. Concentration of both total nitrogen and phosphorus was higher at the beginning of the rain event and decreased with the increase in rainfall duration. Consequently, in the design of stormwater quality mitigation strategies for nutrients removal, it is important to target the initial period of rain events. The variability of wash-off of nitrogen with rainfall intensity was significantly different to phosphorus wash-off. The concentration of nitrogen was higher in the wash-off for low intensity rain events compared to the wash-off for high intensity rain events. On the other hand, the concentration of phosphorus in the wash-off was high for high intensity rain events compared to low intensity rain events. Consequently, the nitrogen washoff can be defined as a source limiting process and phosphorus wash-off as a transport limiting process. This highlights the importance of taking into consideration the wash-off of low intensity rain events in the design of stormwater quality mitigation strategies targeting the nitrogen removal. All the nitrogen species in wash-off are primarily in dissolved form whereas phosphorus is in particulate form. The differences in the nitrogen and phosphorus wash-off processes is principally due to the degree of solubility, attachment to particulates, composition of total nitrogen and total phosphorus and the degree of adherence of the solids particles to the surface to which nutrients are attached. The particulate nitrogen available for wash-off is removed readily as these are mobilised as free solids particles on the surface. Phosphorus is washed-off mostly with the solids particles which are strongly adhered to the surface or as the fixed solids load. Investigation of the nitrogen wash-off process using bulk wash-off samples was in close agreement with the investigation of dissolved fraction of wash-off solids. This was primarily due to the predominant nature of dissolved nitrogen. However, the investigation of the processes which underpin phosphorus wash-off using bulk washoff samples could lead to loss of information. This is due to the composition of total phosphorus in wash-off solids and the inherent variability of the wash-off process for the different particle size ranges. This variability should preferably be taken into consideration as phosphorus wash-off is predominantly in particulate form. Therefore, care needs to be taken in the investigation of the phosphorus wash-off process using bulk wash-off samples to ensure that there is no loss of information and hence result in misleading outcomes. The investigation of different particle size ranges of wash-off solids is preferable in the interest of designing effective stormwater quality management strategies targeting phosphorus removal.
Resumo:
In paper has been to investigate the morphological patterns and kinetics of PDMS spreading on silicon wafer using combination of techniques like ellipsometry, atomic force microscope (AFM), scanning electron microscope (SEM) and optical microscopy. A macroscopic silicone oil drops as well as PDMS water based emulsions were studied after deposition on a flat surface of silicon wafer in air, water and vacuum. our own measurements using an imaging ellipsometer, which also clearly shows the presence of a precursor film. The diffusion constant of this film, measured with a 60 000 cS PDMS sample spreading on a hydrophilic silicon wafer, is Df = 1.4 10-11 m2/s. Regardless of their size, density and method of deposition, droplets on both types of wafer (hydrophilic and hydrophobic) flatten out over a period of many hours, up to 3 days. During this process neighbouring droplets may coalesce, but there is strong evidence that some of the PDMS from the droplets migrates into a thin, continuous film that covers the surface in between droplets. The thin film appears to be ubiquitous if there has been any deposition of PDMS. However, this statement needs further verification. One question is whether the film forms immediately after forced drying, or whether in some or all cases it only forms by spreading from isolated droplets as they slowly flatten out.
Resumo:
The crystal structure of the modified unsymmetrically N, N'-substituted viologen chromophore, N-ethyl- N'-(2-phosphonoethyl)-4, 4'-bipyridinium dichloride 0.75 hydrate. (1) has been determined. Crystals are triclinic, space group P-1 with Z = 2 in a cell with a = 7.2550(1), b = 13.2038(5), c = 18.5752(7) Å, α = 86.495(3), β = 83.527(2), γ = 88.921(2)o. The two independent but pseudo-symmetrically related cations in the asymmetric unit form one-dimensional hydrogen-bonded chains through short homomeric phosphonic acid O-H...O links [2.455(4), 2.464(4)A] while two of the chloride anions are similarly strongly linked to phosphonic acid groups [O-H…Cl, 2.889(4), 2.896(4)Å]. The other two chloride anions together with the two water molecules of solvation (one with partial occupancy) form unusual cyclic hydrogen-bonded bis(Cl...water) dianion units which lie between the layers of bipyridylium rings of the cation chain structures with which they are weakly associated.