193 resultados para tunable magnetic-electric


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunable synthesis of bimetallic AuxAg1-x alloyed nanoparticles and in situ monitoring of their plasmonic responses is presented. This is a new conceptual approach based on green and energy efficient, reactive, and highly-non-equilibrium microplasma chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Customized magnetic traps were developed to produce a domain of dense plasmas with a narrow ion beam directed to a particular area of the processed substrate. A planar magnetron coupled with an arc discharge source created the magnetic traps to confine the plasma electrons and generate the ion beam with the controlled ratio of ion-to-neutral fluxes. Images of the plasma jet patterns and numerical vizualizations help explaining the observed phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the chemical synthesis of the arrays of silicon oxide nanodots and their self-organization on the surface via physical processes triggered by surface charges. The method based on chemically active oxygen plasma leads to the rearrangement of nanostructures and eventually to the formation of groups of nanodots. This behavior is explained in terms of the effect of electric field on the kinetics of surface processes. The direct measurements of the electric charges on the surface demonstrate that the charge correlates with the density and arrangement of nanodots within the array. Extensive numerical simulations support the proposed mechanism and prove a critical role of the electric charges in the self-organization. This simple and environment-friendly self-guided process could be used in the chemical synthesis of large arrays of nanodots on semiconducting surfaces for a variety of applications in catalysis, energy conversion and storage, photochemistry, environmental and biosensing, and several others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasmaelectrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, uniquely plasma-enabled and environment-friendly process to reduce the thickness of vertically standing graphenes to only 4–5 graphene layers and arranging them in dense, ultra-large surface area, ultra-open-edge-length, self-organized and interconnected networks is demonstrated. The approach for the ultimate thickness reduction to 1–2 graphene layers is also proposed. The vertical graphene networks are optically transparent and show tunable electric properties from semiconducting to semi-metallic and metallic at room and near-room temperature, thus recovering semi-metallic properties of a single-layer graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility to control the morphology and nucleation density of quasi-one-dimensional, single-crystalline α -Fe2 O3 nanostructures by varying the electric potential of iron surfaces exposed to reactive oxygen plasmas is demonstrated experimentally. A systematic increase in the oxygen ion flux through rf biasing of otherwise floating substrates and then an additional increase of the ion/neutral density resulted in remarkable structural transformations of straight nanoneedles into nanowires with controlled tapering/aspect ratio and also in larger nucleation densities. Multiscale numerical simulations relate the microscopic ion flux topographies to the nanostructure nucleation and morphological evolution. This approach is applicable to other metal-oxide nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current-voltage characteristics of the planar magnetron are studied experimentally and by numerical simulation. Based on the measured current-voltage characteristics, a model of the planar magnetron discharge is developed with the background gas pressure and magnetic field used as parameters. The discharge pressure was varied in a range of 0.7-1.7 Pa, the magnetic field of the magnetron was of 0.033-0.12 T near the cathode surface, the discharge current was from 1 to 25 A, and the magnetic field lines were tangential to the substrate surface in the region of the magnetron discharge ignition. The discharge model describes the motion of energetic secondary electrons that gain energy by passing the cathode sheath across the magnetic field, and the power required to sustain the plasma generation in the bulk. The plasma electrons, in turn, are accelerated in the electric field and ionize effectively the background gas species. The model is based on the assumption about the prevailing Bohm mechanism of electron conductivity across the magnetic field. A criterion of the self-sustained discharge ignition is used to establish the dependence of the discharge voltage on the discharge current. The dependence of the background gas density on the current is also observed from the experiment. The model is consistent with the experimental results. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-component fluid model for a dusty plasma-sheath in an oblique magnetic field is presented. The study is carried out for the conditions when the thermophoretic force associated with the electron temperature gradient is one of the most important forces affecting dust grains in the sheath. It is shown that the sheath properties (the sheath size, the electron, ion and dust particle densities and velocities, the electric field potential, and the forces affecting the dust particles) are functions of the neutral gas pressure and ion temperature, the dust size, the dust material density, and the electron temperature gradient. Effects of plasma-dust collisions on the sheath structure are studied. It is shown that an increase in the forces pushing dust particles to the wall is accompanied by a decrease in the sheath width. The results of this work are particularly relevant to low-temperature plasma-enabled technologies, where effective control of nano- and microsized particles near solid or liquid surfaces is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma transport in a hybrid dc vacuum arc plasma source for ion deposition and plasma immersion treatment is considered. It is found that external crossed electric and magnetic fields near the substrate can significantly reduce the relative amplitude of ion current fluctuations I-f at the substrate surface. In particular, I-f decreases with the applied magnetic field when the bias voltage exceeds 300 V, thus allowing one to reduce the deviations from the rated process parameters. This phenomenon can be attributed to an interaction between the metal-plasma jet from the arc source and the discharge plasma in the crossed fields. © 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parameters of a discharge sustained in a planar magnetron configuration with crossed electric and magnetic fields are studied experimentally and numerically. By comparing the data obtained in the experiment with the results of calculations made using the proposed theoretical model, conclusion was made about the leading role of the turbulence-driven Bohm electron conductivity in the low-pressure operation mode (up to 1 Pa) of the discharge in crossed electric and magnetic fields. A strong dependence of the width of the cathode sputter trench, associated with the ionization region of the magnetron discharge, on the discharge parameters was observed in the experiments. The experimental data were used as input parameters in the discharge model that describes the motion of secondary electrons across the magnetic field in the ionization region and takes into account the classical, near-wall, and Bohm mechanisms of electron conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective control of the ion current distribution over large-area (up to 103 cm2) substrates with the magnetic fields of a complex structure by using two additional magnetic coils installed under the substrate exposed to vacuum arc plasmas is demonstrated. When the magnetic field generated by the additional coils is aligned with the direction of the magnetic field generated by the guiding and focusing coils of the vacuum arc source, a narrow ion density distribution with the maximum current density 117 A m-2 is achieved. When one of the additional coils is set to generate the magnetic field of the opposite direction, an area almost uniform over the substrate of 103 cm2 ion current distribution with the mean value of 45 A m-2 is achieved. Our findings suggest that the system with the vacuum arc source and two additional magnetic coils can be effectively used for the effective, high throughput, and highly controllable plasma processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents results of comparative investigation of carbon nanotubes growth processes in dense low-temperature plasma and on substrate surface. Hybrid/Monte-Carlo numerical simulations were used to demonstrate the differences in the ion fluxes, growth rates and kinetics of adsorbed atoms re-distribution on substrate and nanotubes surfaces. We show that the plasma parameters significantly affect the nanotubes growth kinetics. We demonstrate that the growth rates of the nanotubes in plasma and on surface can differ by three orders, and the specific fluxes to the nanotube in the plasma can exceed the flux to surface-grown nanotube by six orders. We also show that the metal catalyst used for the nanotubes production on surface and in arc is a subject to very different conditions and this may be a key factor for the nanotube growth mode. The obtained dependencies for the ion fluxes to the nanotubes and nanotubes growth rates on the plasma parameters may be useful for selection of the production methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain decoding of functional Magnetic Resonance Imaging data is a pattern analysis task that links brain activity patterns to the experimental conditions. Classifiers predict the neural states from the spatial and temporal pattern of brain activity extracted from multiple voxels in the functional images in a certain period of time. The prediction results offer insight into the nature of neural representations and cognitive mechanisms and the classification accuracy determines our confidence in understanding the relationship between brain activity and stimuli. In this paper, we compared the efficacy of three machine learning algorithms: neural network, support vector machines, and conditional random field to decode the visual stimuli or neural cognitive states from functional Magnetic Resonance data. Leave-one-out cross validation was performed to quantify the generalization accuracy of each algorithm on unseen data. The results indicated support vector machine and conditional random field have comparable performance and the potential of the latter is worthy of further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continuous steady-state current drive in a spherical argon plasma by transverse oscillating magnetic field (OMF) is investigated. The experimental results reveal that a rotating magnetic field is generated, and its amplitude depends linearly on the external steady vertical magnetic field. It has been shown that steady toroidal currents of up to about 400 A can be driven by a 490 kHz OMF with an input power of 1.4 kW. The generation of steady toroidal magnetic fields directed oppositely in the upper and lower hemispheres have been recorded. The measurements of time-varying magnetic fields unveil a strong nonlinear effect of the frequency-doubled field harmonics generation. The electron number density and temperature of up to 6.2×1018 m-3 and 12 eV have been obtained. The observed effects validate the existing theory of the OMF current drive in spherical plasmas.