190 resultados para transmembrane protease serine 6
Resumo:
The Kallikrein (KLK) gene locus encodes a family of serine proteases and is the largest contiguous cluster of protease-encoding genes attributed an evolutionary age of 330 million years. The KLK locus has been implicated as a high susceptibility risk loci in numerous cancer studies through the last decade. The KLK3 gene already has established clinical relevance as a biomarker in prostate cancer prognosis through its encoded protein, prostate-specific antigen. Data mined through genome-wide association studies (GWAS) and next-generation sequencing point to many important candidate single nucleotide polymorphisms (SNPs) in KLK3 and other KLK genes. SNPs in the KLK locus have been found to be associated with several diseases including cancer, hypertension, cardiovascular disease and atopic dermatitis. Moreover, introducing a model incorporating SNPs to improve the efficiency of prostate-specific antigen in detecting malignant states of prostate cancer has been recently suggested. Establishing the functional relevance of these newly-discovered SNPs, and their interactions with each other, through in silico investigations followed by experimental validation, can accelerate the discovery of diagnostic and prognostic biomarkers. In this review, we discuss the various genetic association studies on the KLK loci identified either through candidate gene association studies or at the GWAS and post-GWAS front to aid researchers in streamlining their search for the most significant, relevant and therapeutically promising candidate KLK gene and/or SNP for future investigations.
Resumo:
The human kallikrein-related peptidases are a subgroup of trypsin and chymotrypsin-like serine peptidases that are characterized by their homology to tissue kallikrein or kallikrein 1 (KLK1) encoded by the KLK1 gene (reviewed in[1-4]). The human KLK locus spans an approximately 320 kb region on chromosome 19q13.3-13.4 and contains fifteen genes encoding KLK1 and fourteen other kallikrein-related peptidases, KLK2-KLK15, which have been named contiguously in the locus in the order of their discovery [5-8] (Figure 606.1). It is the largest contiguous cluster of serine protease encoding genes in the human genome which has evolved from gene duplication of KLK1 and then subsequent reduplication of the newly evolved KLK genes [2]. The high conservation noted for KLK1-KLK3 (62-77%) reflects the proposed duplication of the KLK1 gene that produced the KLK2 gene which further generated the KLK3 gene. In contrast, the newer KLK4-KLK15 proteases share much less similarity, from 24-66%, although strong homology between KLK4 and KLK5, KLK9 and KLK11, and KLK10 and KLK12 suggests these genes are duplications of each other [2]...
Resumo:
High tumor kallikrein-related-peptidase 4 (KLK4) levels are associated with a poor outcome for women with serous epithelial ovarian cancer (EOC), for which peritoneal dissemination and chemoresistance are key events. To determine the role of KLK4 in these events, we examined KLK4-transfected SKOV-3 and endogenous KLK4 expressing OVCA432 cells in 3-dimensional (3D) suspension culture to mimic the ascites microenvironment. KLK4-SKOV-3 cells formed multicellular aggregates (MCAs) as seen in ascites, as did SKOV-3 cells treated with active KLK4. MCA formation was reduced by treatment with a KLK4 blocking antibody or the selective active site KLK4 sunflower trypsin inhibitor (SFTI-FCQR). KLK4-MCAs formed larger cancer cell foci in mesothelial cell monolayers than those formed by vector and native SKOV-3 cells, suggesting KLK4-MCAs are highly invasive in the peritoneal microenvironment. A high level of KLK4 is expressed by ascitic EOC cells compared to matched primary tumor cells, further supporting its role in the ascitic microenvironment. Interestingly, KLK4 transfected SKOV-3 cells expressed high levels of the KLK4 substrate, urokinase plasminogen activator (uPA), particularly in 3D-suspension, and high levels of both KLK4 and uPA were observed in patient cells taken from ascites. Importantly, the KLK4-MCAs were paclitaxel resistant which was reversed by SFTI-FCQR and to a lesser degree by the general serine protease inhibitor, Aprotinin, suggesting that in addition to uPA, other as yet unidentified substrates of KLK4 must be involved. Nonetheless, these data suggest that KLK4 inhibition, in conjunction with paclitaxel, may improve the outcome for women with serous epithelial ovarian cancer and high KLK4 levels in their tumors.
Resumo:
A review of the 6th APT focusing on the work and performance of Rohan Wealleans
Resumo:
Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is kemmlitzite (Sr,Ce)Al3(AsO4)(SO4)(OH)6. The objective of this research is to determine the molecular structure of the mineral kemmlitzite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the AsO43- , SO42- and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 984 cm-1 assigned to the SO42- symmetric stretching mode. Raman bands at 690, 772 and 825 cm-1 may be assigned to the AsO43- antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm-1 are attributable to the doubly degenerate 2 (SO4)2- bending mode. Vibrational spectroscopy is important in the assessment of the molecular structure of the kemmlitzite, especially when the mineral is non-diffracting or poorly diffracting.
Resumo:
The Kallikrein-related peptidase, KLK4, has been shown to be significantly overexpressed in prostate tumours in numerous studies and is suggested to be a potential biomarker for prostate cancer. KLK4 may also play a role in prostate cancer progression through its involvement in epithelial-mesenchymal transition, a more aggressive phenotype, and metastases to bone. It is well known that genetic variation has the potential to affect gene expression and/or various protein characteristics and hence we sought to investigate the possible role of single nucleotide polymorphisms (SNPs) in the KLK4 gene in prostate cancer. Assessment of 61 SNPs in the KLK4 locus (±10 kb) in approximately 1300 prostate cancer cases and 1300 male controls for associations with prostate cancer risk and/or prostate tumour aggressiveness (Gleason score <7 versus ≥7) revealed 7 SNPs to be associated with a decreased risk of prostate cancer at the Ptrend<0.05 significance level. Three of these SNPs, rs268923, rs56112930 and the HapMap tagSNP rs7248321, are located several kb upstream of KLK4; rs1654551 encodes a non-synonymous serine to alanine substitution at position 22 of the long isoform of the KLK4 protein, and the remaining 3 risk-associated SNPs, rs1701927, rs1090649 and rs806019, are located downstream of KLK4 and are in high linkage disequilibrium with each other (r2≥0.98). Our findings provide suggestive evidence of a role for genetic variation in the KLK4 locus in prostate cancer predisposition.
Resumo:
Purpose To develop a novel 3-D cell culture model with the view to studying the pathomechanisms underlying the development of age-related macular degeneration (AMD). Our central hypothesis is that the silk structural protein fibroin used in conjunction with cultured human cells can be used to mimic the structural relationships between the RPE and choriocapillaris in health and disease. Methods Co-cultures of human RPE cells (ARPE-19 cells grown in Miller’s medium) and microvascular endothelial cells (HMEC-1 cells grown in endothelial culture medium) were established on opposing sides of a synthetic Bruch’s membrane (3 microns thick) constructed from B mori silk fibroin. Cell attachment was facilitated by pre-coating the fibroin membrane with vitronectin (for ARPE-19 cells) and gelatin (for HMEC-1 cells) respectively. The effects of tropoelastin on attachment of ARPE-19 cells was also examined. Barrier function was examined by measurement of trans-epithelial resistance (TER) using a voltohmmeter (EVOM-2). The phagocytic activity of the synthetic RPE was tested using vitronectin-coated microspheres (2 micron diameter FluoSpheres). In some cultures, membrane defects were created by puncturing within a 24 G needle. The architecture of the synthetic tissue before and after wounding was examined by confocal microscopy after staining for ZO-1 and F-actin. Results The RPE layer of the 3D model developed a cobblestoned morphology (validated by staining for ZO-1 and F-actin), displayed barrier function (validated by measurement of TER) and demonstrated cytoplasmic uptake of vitronectin-coated microspheres. Attachment of ARPE-19 cells to fibroin was unaffected by tropoelastin. Microvascular endothelial cells attached well to the gelatin-coated surface of the fibroin membrane and remained physically separated from the overlaying RPE layer. The fibroin membranes were amenable to puncturing without collapse thus providing the opportunity to study transmembrane migration of the endothelial cells. Conclusions Synthetic Bruch’s membranes constructed from silk fibroin, vitronectin and gelatin, support the co-cultivation of RPE cells and microvascular endothelial cells. The resulting RPE layer displays functions similar to that of native RPE and the entire tri-layered structure displays potential to be used as an in vitro model of choroidal neovascularization.
Resumo:
PURPOSE: To test the reliability of Timed Up and Go Tests (TUGTs) in cardiac rehabilitation (CR) and compare TUGTs to the 6-Minute Walk Test (6MWT) for outcome measurement. METHODS: Sixty-one of 154 consecutive community-based CR patients were prospectively recruited. Subjects undertook repeated TUGTs and 6MWTs at the start of CR (start-CR), postdischarge from CR (post-CR), and 6 months postdischarge from CR (6 months post-CR). The main outcome measurements were TUGT time (TUGTT) and 6MWT distance (6MWD). RESULTS: Mean (SD) TUGTT1 and TUGTT2 at the 3 assessments were 6.29 (1.30) and 5.94 (1.20); 5.81 (1.22) and 5.53 (1.09); and 5.39 (1.60) and 5.01 (1.28) seconds, respectively. A reduction in TUGTT occurred between each outcome point (P ≤ .002). Repeated TUGTTs were strongly correlated at each assessment, intraclass correlation (95% CI) = 0.85 (0.76–0.91), 0.84 (0.73–0.91), and 0.90 (0.83–0.94), despite a reduction between TUGTT1 and TUGTT2 of 5%, 5%, and 7%, respectively (P ≤ .006). Relative decreases in TUGTT1 (TUGTT2) occurred from start-CR to post-CR and from start-CR to 6 months post-CR of −7.5% (−6.9%) and −14.2% (−15.5%), respectively, while relative increases in 6MWD1 (6MWD2) occurred, 5.1% (7.2%) and 8.4% (10.2%), respectively (P < .001 in all cases). Pearson correlation coefficients for 6MWD1 to TUGTT1 and TUGTT2 across all times were −0.60 and −0.68 (P < .001) and the intraclass correlations (95% CI) for the speeds derived from averaged 6MWDs and TUGTTs were 0.65 (0.54, 0.73) (P < .001). CONCLUSIONS: Similar relative changes occurred for the TUGT and the 6MWT in CR. A significant correlation between the TUGTT and 6MWD was demonstrated, and we suggest that the TUGT may provide a related or a supplementary measurement of functional capacity in CR.
Resumo:
Plumbogummite PbAl3(PO4)2(OH,H2O)6 is a mineral of environmental significance and is a member of the alunite-jarosite supergroup. The molecular structure of the mineral has been investigated by Raman spectroscopy. The spectra of different plumbogummite specimens differ although there are many common features. The Raman spectra prove the spectral profile consisting of overlapping bands and shoulders. Raman bands and shoulders observed at 971, 980, 1002 and 1023 cm−1 (China sample) and 913, 981, 996 and 1026 cm−1 (Czech sample) are assigned to the ν1 symmetric stretching modes of the (PO4)3−, at 1002 and 1023 cm−1 (China) and 996 and 1026 cm−1 to the ν1 symmetric stretching vibrations of the (O3POH)2− units, and those at 1057, 1106 and 1182 (China) and at 1102, 1104 and 1179 cm−1 (Czech) to the ν3 (PO4)3− and ν3 (PO3) antisymmetric stretching vibrations. Raman bands and shoulders at 634, 613 and 579 cm−1 (China) and 611 and 596 cm−1 (Czech) are attributed to the ν4 (δ) (PO4)3− bending vibrations and those at 507, 494 and 464 cm−1 (China) and 505 and 464 cm−1 (Czech) to the ν2 (δ) (PO4)3− bending vibrations. The Raman spectrum of the OH stretching region is complex. Raman bands and shoulders are identified at 2824, 3121, 3249, 3372, 3479 and 3602 cm−1 for plumbogummite from China, and at 3077, 3227, 3362, 3480, 3518 and 3601 cm−1 for the Czech Republic sample. These bands are assigned to the ν OH stretching modes of water molecules and hydrogen ions. Approximate O–H⋯O hydrogen bond lengths inferred from the Raman spectra vary in the range >3.2–2.62 Å (China) and >3.2–2.67 Å (Czech). The minority presence of some carbonate ions in the plumbogummite (China sample) is connected with distinctive intensity increasing of the Raman band at 1106 cm−1, in which may participate the ν1 (CO3)2− symmetric stretching vibration overlapped with phosphate stretching vibrations.
Resumo:
Zanazziite is the magnesium member of a complex beryllium calcium phosphate mineral group named roscherite. The studied samples were collected from the Ponte do Piauí mine, located in Itinga, Minas Gerais. The mineral was studied by electron microprobe, Raman and infrared spectroscopy. The chemical formula can be expressed as Ca2.00(Mg3.15,Fe0.78,Mn0.16,Zn0.01,Al0.26,Ca0.14)Be4.00(PO4)6.09(OH)4.00⋅5.69(H2O) and shows an intermediate member of the zanazziite–greinfeinstenite series, with predominance of zanazziite member. The molecular structure of the mineral zanazziite has been determined using a combination of Raman and infrared spectroscopy. A very intense Raman band at 970 cm−1 is assigned to the phosphate symmetric stretching mode whilst the Raman bands at 1007, 1047, 1064 and 1096 cm−1 are attributed to the phosphate antisymmetric stretching mode. The infrared spectrum is broad and the antisymmetric stretching bands are prominent. Raman bands at 559, 568, 589 cm−1 are assigned to the ν4 out of plane bending modes of the PO4 and HPO4 units. The observation of multiple bands supports the concept that the symmetry of the phosphate unit in the zanazziite structure is reduced in symmetry. Raman bands at 3437 and 3447 cm−1 are attributed to the OH stretching vibrations; Raman bands at 3098 and 3256 are attributed to water stretching vibrations. The width and complexity of the infrared spectral profile in contrast to the well resolved Raman spectra, proves that the pegmatitic phosphates are better studied with Raman spectroscopy.
Resumo:
In the structure of the of the phenolate salt of the sulfa drug sulfamethazine with 3,5-dinitrosalicylic acid, C12H15N4O2S+ C7H3N2O7-, the dihedral angle between the pyrimidine and phenyl rings of the cation is 59.70(17)\%. Cation--anion hydrogen-bonding interactions involving pyrimidine N+-H...O(carboxyl) and amine N-H...O(carboxyl) pairs give a cyclic R2/2(8) motif while secondary N-H...O hydrogen bonds between the aniline group and both sulfone and nitro O-atom acceptors give a two-dimensional structure extending along (001).
Resumo:
Raman spectrum of callaghanite, Cu2Mg2(CO3)(OH)6⋅2H2O, was studied and compared with published Raman spectra of azurite, malachite and hydromagnesite. Stretching and bending vibrations of carbonate and hydroxyl units and water molecules were tentatively assigned. Approximate O–H…O hydrogen bond lengths were inferred from the spectra. Because of the high content of hydroxyl ions in the crystal structure in comparison with low content of carbonate units, callaghanite should be better classified as a carbonatohydroxide than a hydroxycarbonate.
Resumo:
Background: We have developed a sheep model of intrauterine ureaplasma infection. We aimed to examine the capability of ureaplasmas in the amniotic fluid to infect the fetus and alter fetal development...
Resumo:
The structures of the anhydrous proton-transfer compounds of the sulfa drug sulfamethazine with 5-nitrosalicylic acid and picric acid, namely 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2-hydroxy-5-nitrobenzoate, C12H15N4O2S(+)·C7H4NO4(-), (I), and 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2,4,6-trinitrophenolate, C12H15N4O2S(+)·C6H2N3O7(-), (II), respectively, have been determined. In the asymmetric unit of (I), there are two independent but conformationally similar cation-anion heterodimer pairs which are formed through duplex intermolecular N(+)-H...Ocarboxylate and N-H...Ocarboxylate hydrogen-bond pairs, giving a cyclic motif [graph set R2(2)(8)]. These heterodimers form separate and different non-associated substructures through aniline N-H...O hydrogen bonds, one one-dimensional, involving carboxylate O-atom acceptors, the other two-dimensional, involving both carboxylate and hydroxy O-atom acceptors. The overall two-dimensional structure is stabilized by π-π interactions between the pyrimidinium ring and the 5-nitrosalicylate ring in both heterodimers [minimum ring-centroid separation = 3.4580 (8) Å]. For picrate (II), the cation-anion interaction involves a slightly asymmetric chelating N-H...O R2(1)(6) hydrogen-bonding association with the phenolate O atom, together with peripheral conjoint R1(2)(6) interactions between the same N-H groups and O atoms of the ortho-related nitro groups. An inter-unit amine N-H...Osulfone hydrogen bond gives one-dimensional chains which extend along a and inter-associate through π-π interactions between the pyrimidinium rings [centroid-centroid separation = 3.4752 (9) Å]. The two structures reported here now bring to a total of four the crystallographically characterized examples of proton-transfer salts of sulfamethazine with strong organic acids.