124 resultados para text analytics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report identifies the outcomes of a program evaluation of the five year Workplace Health and Safety Strategy (2012-2017), specifically, the engagement component within the Queensland Ambulance Service. As part of the former Department of Community Safety, their objective was to work towards harmonising the occupational health and safety policies and process to improve the workplace culture. The report examines and assess the process paths and resource inputs into the strategy, provides feedback on progress to achieving identified goals as well as identify opportunities for improvements and barriers to progress. Consultations were held with key stakeholders within QAS and focus groups were facilitated with managers and health and safety representatives of each Local Area Service Network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a robust method to detect handwritten text from unconstrained drawings on normal whiteboards. Unlike printed text on documents, free form handwritten text has no pattern in terms of size, orientation and font and it is often mixed with other drawings such as lines and shapes. Unlike handwritings on paper, handwritings on a normal whiteboard cannot be scanned so the detection has to be based on photos. Our work traces straight edges on photos of the whiteboard and builds graph representation of connected components. We use geometric properties such as edge density, graph density, aspect ratio and neighborhood similarity to differentiate handwritten text from other drawings. The experiment results show that our method achieves satisfactory precision and recall. Furthermore, the method is robust and efficient enough to be deployed in a mobile device. This is an important enabler of business applications that support whiteboard-centric visual meetings in enterprise scenarios. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing students’ conceptual understanding of technical content is important for instructors as well as students to learn content and apply knowledge in various contexts. Concept inventories that identify possible misconceptions through validated multiple-choice questions are helpful in identifying a misconception that may exist, but do not provide a meaningful assessment of why they exist or the nature of the students’ understanding. We conducted a case study with undergraduate students in an electrical engineering course by testing a validated multiple-choice response concept inventory that we augmented with a component for students to provide written explanations for their multiple-choice selection. Results revealed that correctly chosen multiple-choice selections did not always match correct conceptual understanding for question testing a specific concept. The addition of a text-response to multiple-choice concept inventory questions provided an enhanced and meaningful assessment of students’ conceptual understanding and highlighted variables associated with current concept inventories or multiple choice questions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How should marketing educators teach today’s technologically savvy college students the latest knowledge as well as relevant soft and hardskills for employment in a world of Web 2.0? The changing environment requires the development of innovative pedagogical approaches to enhance students’ experiential learning. Recent research has focused on the idea of implementing technology and the adoption of educational blogging in the marketing curriculum. This paper outlines a semesterlong marketing blog competition, in which students had to (1) create and maintain a marketing blog and (2) apply web analytics to analyze, manage and improve their blog performance based on key performance indicators. This article offers a detailed discussion of the design and implementation as well as the outcomes based on quantitative and qualitative student feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Big data analysis in healthcare sector is still in its early stages when comparing with that of other business sectors due to numerous reasons. Accommodating the volume, velocity and variety of healthcare data Identifying platforms that examine data from multiple sources, such as clinical records, genomic data, financial systems, and administrative systems Electronic Health Record (EHR) is a key information resource for big data analysis and is also composed of varied co-created values. Successful integration and crossing of different subfields of healthcare data such as biomedical informatics and health informatics could lead to huge improvement for the end users of the health care system, i.e. the patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the ever increasing amount of eHealth data available from various eHealth systems and sources, Health Big Data Analytics promises enticing benefits such as enabling the discovery of new treatment options and improved decision making. However, concerns over the privacy of information have hindered the aggregation of this information. To address these concerns, we propose the use of Information Accountability protocols to provide patients with the ability to decide how and when their data can be shared and aggregated for use in big data research. In this paper, we discuss the issues surrounding Health Big Data Analytics and propose a consent-based model to address privacy concerns to aid in achieving the promised benefits of Big Data in eHealth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasingly larger scale applications are generating an unprecedented amount of data. However, the increasing gap between computation and I/O capacity on High End Computing machines makes a severe bottleneck for data analysis. Instead of moving data from its source to the output storage, in-situ analytics processes output data while simulations are running. However, in-situ data analysis incurs much more computing resource contentions with simulations. Such contentions severely damage the performance of simulation on HPE. Since different data processing strategies have different impact on performance and cost, there is a consequent need for flexibility in the location of data analytics. In this paper, we explore and analyze several potential data-analytics placement strategies along the I/O path. To find out the best strategy to reduce data movement in given situation, we propose a flexible data analytics (FlexAnalytics) framework in this paper. Based on this framework, a FlexAnalytics prototype system is developed for analytics placement. FlexAnalytics system enhances the scalability and flexibility of current I/O stack on HEC platforms and is useful for data pre-processing, runtime data analysis and visualization, as well as for large-scale data transfer. Two use cases – scientific data compression and remote visualization – have been applied in the study to verify the performance of FlexAnalytics. Experimental results demonstrate that FlexAnalytics framework increases data transition bandwidth and improves the application end-to-end transfer performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concept mapping involves determining relevant concepts from a free-text input, where concepts are defined in an external reference ontology. This is an important process that underpins many applications for clinical information reporting, derivation of phenotypic descriptions, and a number of state-of-the-art medical information retrieval methods. Concept mapping can be cast into an information retrieval (IR) problem: free-text mentions are treated as queries and concepts from a reference ontology as the documents to be indexed and retrieved. This paper presents an empirical investigation applying general-purpose IR techniques for concept mapping in the medical domain. A dataset used for evaluating medical information extraction is adapted to measure the effectiveness of the considered IR approaches. Standard IR approaches used here are contrasted with the effectiveness of two established benchmark methods specifically developed for medical concept mapping. The empirical findings show that the IR approaches are comparable with one benchmark method but well below the best benchmark.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid advances in sequencing technologies (Next Generation Sequencing or NGS) have led to a vast increase in the quantity of bioinformatics data available, with this increasing scale presenting enormous challenges to researchers seeking to identify complex interactions. This paper is concerned with the domain of transcriptional regulation, and the use of visualisation to identify relationships between specific regulatory proteins (the transcription factors or TFs) and their associated target genes (TGs). We present preliminary work from an ongoing study which aims to determine the effectiveness of different visual representations and large scale displays in supporting discovery. Following an iterative process of implementation and evaluation, representations were tested by potential users in the bioinformatics domain to determine their efficacy, and to understand better the range of ad hoc practices among bioinformatics literate users. Results from two rounds of small scale user studies are considered with initial findings suggesting that bioinformaticians require richly detailed views of TF data, features to compare TF layouts between organisms quickly, and ways to keep track of interesting data points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the explosion of information resources, there is an imminent need to understand interesting text features or topics in massive text information. This thesis proposes a theoretical model to accurately weight specific text features, such as patterns and n-grams. The proposed model achieves impressive performance in two data collections, Reuters Corpus Volume 1 (RCV1) and Reuters 21578.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Death certificates provide an invaluable source for cancer mortality statistics; however, this value can only be realised if accurate, quantitative data can be extracted from certificates – an aim hampered by both the volume and variable nature of certificates written in natural language. This paper proposes an automatic classification system for identifying cancer related causes of death from death certificates. Methods Detailed features, including terms, n-grams and SNOMED CT concepts were extracted from a collection of 447,336 death certificates. These features were used to train Support Vector Machine classifiers (one classifier for each cancer type). The classifiers were deployed in a cascaded architecture: the first level identified the presence of cancer (i.e., binary cancer/nocancer) and the second level identified the type of cancer (according to the ICD-10 classification system). A held-out test set was used to evaluate the effectiveness of the classifiers according to precision, recall and F-measure. In addition, detailed feature analysis was performed to reveal the characteristics of a successful cancer classification model. Results The system was highly effective at identifying cancer as the underlying cause of death (F-measure 0.94). The system was also effective at determining the type of cancer for common cancers (F-measure 0.7). Rare cancers, for which there was little training data, were difficult to classify accurately (F-measure 0.12). Factors influencing performance were the amount of training data and certain ambiguous cancers (e.g., those in the stomach region). The feature analysis revealed a combination of features were important for cancer type classification, with SNOMED CT concept and oncology specific morphology features proving the most valuable. Conclusion The system proposed in this study provides automatic identification and characterisation of cancers from large collections of free-text death certificates. This allows organisations such as Cancer Registries to monitor and report on cancer mortality in a timely and accurate manner. In addition, the methods and findings are generally applicable beyond cancer classification and to other sources of medical text besides death certificates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Melanoma is on the rise, especially in Caucasian populations exposed to high ultraviolet radiation such as in Australia. This paper examined the psychological components facilitating change in skin cancer prevention or early detection behaviours following a text message intervention. Methods The Queensland-based participants were 18 to 42 years old, from the Healthy Text study (N = 546). Overall, 512 (94%) participants completed the 12-month follow-up questionnaires. Following the social cognitive model, potential mediators of skin self-examination (SSE) and sun protection behaviour change were examined using stepwise logistic regression models. Results At 12-month follow-up, odds of performing an SSE in the past 12 months were mediated by baseline confidence in finding time to check skin (an outcome expectation), with a change in odds ratio of 11.9% in the SSE group versus the control group when including the mediator. Odds of greater than average sun protective habits index at 12-month follow-up were mediated by (a) an attempt to get a suntan at baseline (an outcome expectation) and (b) baseline sun protective habits index, with a change in odds ratio of 10.0% and 11.8%, respectively in the SSE group versus the control group. Conclusions Few of the suspected mediation pathways were confirmed with the exception of outcome expectations and past behaviours. Future intervention programmes could use alternative theoretical models to elucidate how improvements in health behaviours can optimally be facilitated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ongoing challenge for Learning Analytics research has been the scalable derivation of user interaction data from multiple technologies. The complexities associated with this challenge are increasing as educators embrace an ever growing number of social and content related technologies. The Experience API (xAPI) alongside the development of user specific record stores has been touted as a means to address this challenge, but a number of subtle considerations must be made when using xAPI in Learning Analytics. This paper provides a general overview to the complexities and challenges of using xAPI in a general systemic analytics solution - called the Connected Learning Analytics (CLA) toolkit. The importance of design is emphasised, as is the notion of common vocabularies and xAPI Recipes. Early decisions about vocabularies and structural relationships between statements can serve to either facilitate or handicap later analytics solutions. The CLA toolkit case study provides us with a way of examining both the strengths and the weaknesses of the current xAPI specification, and we conclude with a proposal for how xAPI might be improved by using JSON-LD to formalise Recipes in a machine readable form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This demonstration introduces the Connected Learning Analytics (CLA) Toolkit. The CLA toolkit harvests data about student participation in specified learning activities across standard social media environments, and presents information about the nature and quality of the learning interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present the results of an exploratory study that examined the problem of automating content analysis of student online discussion transcripts. We looked at the problem of coding discussion transcripts for the levels of cognitive presence, one of the three main constructs in the Community of Inquiry (CoI) model of distance education. Using Coh-Metrix and LIWC features, together with a set of custom features developed to capture discussion context, we developed a random forest classification system that achieved 70.3% classification accuracy and 0.63 Cohen's kappa, which is significantly higher than values reported in the previous studies. Besides improvement in classification accuracy, the developed system is also less sensitive to overfitting as it uses only 205 classification features, which is around 100 times less features than in similar systems based on bag-of-words features. We also provide an overview of the classification features most indicative of the different phases of cognitive presence that gives an additional insights into the nature of cognitive presence learning cycle. Overall, our results show great potential of the proposed approach, with an added benefit of providing further characterization of the cognitive presence coding scheme.