113 resultados para stochastic PDE
Resumo:
This article describes a maximum likelihood method for estimating the parameters of the standard square-root stochastic volatility model and a variant of the model that includes jumps in equity prices. The model is fitted to data on the S&P 500 Index and the prices of vanilla options written on the index, for the period 1990 to 2011. The method is able to estimate both the parameters of the physical measure (associated with the index) and the parameters of the risk-neutral measure (associated with the options), including the volatility and jump risk premia. The estimation is implemented using a particle filter whose efficacy is demonstrated under simulation. The computational load of this estimation method, which previously has been prohibitive, is managed by the effective use of parallel computing using graphics processing units (GPUs). The empirical results indicate that the parameters of the models are reliably estimated and consistent with values reported in previous work. In particular, both the volatility risk premium and the jump risk premium are found to be significant.
Resumo:
The contemporary methodology for growth models of organisms is based on continuous trajectories and thus it hinders us from modelling stepwise growth in crustacean populations. Growth models for fish are normally assumed to follow a continuous function, but a different type of model is needed for crustacean growth. Crustaceans must moult in order for them to grow. The growth of crustaceans is a discontinuous process due to the periodical shedding of the exoskeleton in moulting. The stepwise growth of crustaceans through the moulting process makes the growth estimation more complex. Stochastic approaches can be used to model discontinuous growth or what are commonly known as "jumps" (Figure 1). However, in stochastic growth model we need to ensure that the stochastic growth model results in only positive jumps. In view of this, we will introduce a subordinator that is a special case of a Levy process. A subordinator is a non-decreasing Levy process, that will assist in modelling crustacean growth for better understanding of the individual variability and stochasticity in moulting periods and increments. We develop the estimation methods for parameter estimation and illustrate them with the help of a dataset from laboratory experiments. The motivational dataset is from the ornate rock lobster, Panulirus ornatus, which can be found between Australia and Papua New Guinea. Due to the presence of sex effects on the growth (Munday et al., 2004), we estimate the growth parameters separately for each sex. Since all hard parts are shed too often, the exact age determination of a lobster can be challenging. However, the growth parameters for the aforementioned moult processes from tank data being able to estimate through: (i) inter-moult periods, and (ii) moult increment. We will attempt to derive a joint density, which is made up of two functions: one for moult increments and the other for time intervals between moults. We claim these functions are conditionally independent given pre-moult length and the inter-moult periods. The variables moult increments and inter-moult periods are said to be independent because of the Markov property or conditional probability. Hence, the parameters in each function can be estimated separately. Subsequently, we integrate both of the functions through a Monte Carlo method. We can therefore obtain a population mean for crustacean growth (e. g. red curve in Figure 1). [GRAPHICS]
Resumo:
Summary. Interim analysis is important in a large clinical trial for ethical and cost considerations. Sometimes, an interim analysis needs to be performed at an earlier than planned time point. In that case, methods using stochastic curtailment are useful in examining the data for early stopping while controlling the inflation of type I and type II errors. We consider a three-arm randomized study of treatments to reduce perioperative blood loss following major surgery. Owing to slow accrual, an unplanned interim analysis was required by the study team to determine whether the study should be continued. We distinguish two different cases: when all treatments are under direct comparison and when one of the treatments is a control. We used simulations to study the operating characteristics of five different stochastic curtailment methods. We also considered the influence of timing of the interim analyses on the type I error and power of the test. We found that the type I error and power between the different methods can be quite different. The analysis for the perioperative blood loss trial was carried out at approximately a quarter of the planned sample size. We found that there is little evidence that the active treatments are better than a placebo and recommended closure of the trial.
Resumo:
James (1991, Biometrics 47, 1519-1530) constructed unbiased estimating functions for estimating the two parameters in the von Bertalanffy growth curve from tag-recapture data. This paper provides unbiased estimating functions for a class of growth models that incorporate stochastic components and explanatory variables. a simulation study using seasonal growth models indicates that the proposed method works well while the least-squares methods that are commonly used in the literature may produce substantially biased estimates. The proposed model and method are also applied to real data from tagged rack lobsters to assess the possible seasonal effect on growth.
Resumo:
The paper studies stochastic approximation as a technique for bias reduction. The proposed method does not require approximating the bias explicitly, nor does it rely on having independent identically distributed (i.i.d.) data. The method always removes the leading bias term, under very mild conditions, as long as auxiliary samples from distributions with given parameters are available. Expectation and variance of the bias-corrected estimate are given. Examples in sequential clinical trials (non-i.i.d. case), curved exponential models (i.i.d. case) and length-biased sampling (where the estimates are inconsistent) are used to illustrate the applications of the proposed method and its small sample properties.
Resumo:
Stochastic volatility models are of fundamental importance to the pricing of derivatives. One of the most commonly used models of stochastic volatility is the Heston Model in which the price and volatility of an asset evolve as a pair of coupled stochastic differential equations. The computation of asset prices and volatilities involves the simulation of many sample trajectories with conditioning. The problem is treated using the method of particle filtering. While the simulation of a shower of particles is computationally expensive, each particle behaves independently making such simulations ideal for massively parallel heterogeneous computing platforms. In this paper, we present our portable Opencl implementation of the Heston model and discuss its performance and efficiency characteristics on a range of architectures including Intel cpus, Nvidia gpus, and Intel Many-Integrated-Core (mic) accelerators.
Resumo:
This paper addresses an output feedback control problem for a class of networked control systems (NCSs) with a stochastic communication protocol. Under the scenario that only one sensor is allowed to obtain the communication access at each transmission instant, a stochastic communication protocol is first defined, where the communication access is modelled by a discrete-time Markov chain with partly unknown transition probabilities. Secondly, by use of a network-based output feedback control strategy and a time-delay division method, the closed-loop system is modeled as a stochastic system with multi time-varying delays, where the inherent characteristic of the network delay is well considered to improve the control performance. Then, based on the above constructed stochastic model, two sufficient conditions are derived for ensuring the mean-square stability and stabilization of the system under consideration. Finally, two examples are given to show the effectiveness of the proposed method.
Resumo:
The paper presents a geometry-free approach to assess the variation of covariance matrices of undifferenced triple frequency GNSS measurements and its impact on positioning solutions. Four independent geometryfree/ ionosphere-free (GFIF) models formed from original triple-frequency code and phase signals allow for effective computation of variance-covariance matrices using real data. Variance Component Estimation (VCE) algorithms are implemented to obtain the covariance matrices for three pseudorange and three carrier-phase signals epoch-by-epoch. Covariance results from the triple frequency Beidou System (BDS) and GPS data sets demonstrate that the estimated standard deviation varies in consistence with the amplitude of actual GFIF error time series. The single point positioning (SPP) results from BDS ionosphere-free measurements at four MGEX stations demonstrate an improvement of up to about 50% in Up direction relative to the results based on a mean square statistics. Additionally, a more extensive SPP analysis at 95 global MGEX stations based on GPS ionosphere-free measurements shows an average improvement of about 10% relative to the traditional results. This finding provides a preliminary confirmation that adequate consideration of the variation of covariance leads to the improvement of GNSS state solutions.