199 resultados para severity of illness
Resumo:
Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.
Resumo:
Introduction: Smoking status in outpatients with chronic obstructive pulmonary disease (COPD) has been associated with a low body mass index (BMI) and reduced mid-arm muscle circumference (Cochrane & Afolabi, 2004). Individuals with COPD identified as malnourished have also been found to be twice as likely to die within 1 year compared to non-malnourished patients (Collins et al., 2010). Although malnutrition is both preventable and treatable, it is not clear what influence current smoking status, another modifiable risk factor, has on malnutrition risk. The current study aimed to establish the influence of smoking status on malnutrition risk and 1-year mortality in outpatients with COPD. Methods: A prospective nutritional screening survey was carried out between July 2008 and May 2009 at a large teaching hospital (Southampton General Hospital) and a smaller community hospital within Hampshire (Lymington New Forest Hospital). In total, 424 outpatients with a diagnosis of COPD were routinely screened using the ‘Malnutrition Universal Screening Tool’, ‘MUST’ (Elia, 2003); 222 males, 202 females; mean (SD) age 73 (9.9) years; mean (SD) BMI 25.9 (6.4) kg m−2. Smoking status on the date of screening was obtained for 401 of the outpatients. Severity of COPD was assessed using the GOLD criteria, and social deprivation determined using the Index of Multiple Deprivation (Nobel et al., 2008). Results: The overall prevalence of malnutrition (medium + high risk) was 22%, with 32% of current smokers at risk (who accounted for 19% of the total COPD population). In comparison, 19% of nonsmokers and ex-smokers were likely to be malnourished [odds ratio, 1.965; 95% confidence interval (CI), 1.133–3.394; P = 0.015]. Smoking status remained an independent risk factor for malnutrition even after adjustment for age, social deprivation and disease-severity (odds ratio, 2.048; 95% CI, 1.085–3.866; P = 0.027) using binary logistic regression. After adjusting for age, disease severity, social deprivation, smoking status, malnutrition remained a significant predictor of 1-year mortality [odds ratio (medium + high risk versus low risk), 2.161; 95% CI, 1.021–4.573; P = 0.044], whereas smoking status did not (odds ratio for smokers versus ex-smokers + nonsmokers was 1.968; 95% CI, 0.788–4.913; P = 0.147). Discussion: This study highlights the potential importance of combined nutritional support and smoking cessation in order to treat malnutrition. The close association between smoking status and malnutrition risk in COPD suggests that smoking is an important consideration in the nutritional management of malnourished COPD outpatients. Conclusions: Smoking status in COPD outpatients is a significant independent risk factor for malnutrition and a weaker (nonsignificant) predictor of 1-year mortality. Malnutrition significantly predicted 1 year mortality. References: Cochrane, W.J. & Afolabi, O.A. (2004) Investigation into the nutritional status, dietary intake and smoking habits of patients with chronic obstructive pulmonary disease. J. Hum. Nutr. Diet.17, 3–11. Collins, P.F., Stratton, R.J., Kurukulaaratchym R., Warwick, H. Cawood, A.L. & Elia, M. (2010) ‘MUST’ predicts 1-year survival in outpatients with chronic obstructive pulmonary disease. Clin. Nutr.5, 17. Elia, M. (Ed) (2003) The ‘MUST’ Report. BAPEN. http://www.bapen.org.uk (accessed on March 30 2011). Nobel, M., McLennan, D., Wilkinson, K., Whitworth, A. & Barnes, H. (2008) The English Indices of Deprivation 2007. http://www.communities.gov.uk (accessed on March 30 2011).
Resumo:
Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterisation and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression and assess new therapies. This thesis evaluates novel corneal methods of assessing diabetic neuropathy. Over the past several years two new non-invasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy (CCM) allows quantification of corneal nerve parameters and non-contact corneal aesthesiometry (NCCA), the presumed functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and with automatic analysis paradigms developed, are suitable for clinical settings. Each has advantages and disadvantages over established techniques for assessing diabetic neuropathy. New information is presented regarding measurement bias of CCM images, and a unique sampling paradigm and associated accuracy determination method of combinations is described. A novel high-speed corneal nerve mapping procedure has been developed and application of this procedure in individuals with neuropathy has revealed regions of sub-basal nerve plexus that dictate further evaluation, as they appear to show earlier signs of damage than the central region of the cornea that has to date been examined. The discriminative capacity of corneal sensitivity measured by NCCA is revealed to have reasonable potential as a marker of diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.
Resumo:
The modern structural diagnosis process is rely on vibration characteristics to assess safer serviceability level of the structure. This paper examines the potential of change in flexibility method to use in damage detection process and two main practical constraints associated with it. The first constraint addressed in this paper is reduction in number of data acquisition points due to limited number of sensors. Results conclude that accuracy of the change in flexibility method is influenced by the number of data acquisition points/sensor locations in real structures. Secondly, the effect of higher modes on damage detection process has been studied. This addresses the difficulty of extracting higher order modal data with available sensors. Four damage indices have been presented to identify their potential of damage detection with respect to different locations and severity of damage. A simply supported beam with two degrees of freedom at each node is considered only for a single damage cases throughout the paper.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
Road safety barriers are used to minimise the severity of road accidents and protect lives and property. There are several types of barrier in use today. This paper reports the initial phase of research carried out to study the impact response of portable water-filled barrier (PWFB) which has the potential to absorb impact energy and hence provide crash mitigation under low to moderate speeds. Current research on the impact and energy absorption capacity of water-filled road safety barriers is limited due to the complexity of fluid-structure interaction under dynamic impact. In this paper, a novel fluid-structure interaction method is developed based on the combination of Smooth Particle Hydrodynamics (SPH) and Finite Element Method (FEM). The sloshing phenomenon of water inside a PWFB is investigated to explore the energy absorption capacity of water under dynamic impact. It was found that water plays an important role in energy absorption. The coupling analysis developed in this paper will provide a platform to further the research in optimising the behaviour of the PWFB. The effect of the amount of water on its energy absorption capacity is investigated and the results have practical applications in the design of PWFBs.
Resumo:
Background: The regulation of plasminogen activation is a key element in controlling proteolytic events in the extracellular matrix. Our previous studies had demonstrated that in inflamed gingival tissues, tissue-type plasminogen activator (t-PA) is significantly increased in the extracellular matrix of the connective tissue and that interleukin 1β (IL-1β) can up regulate the level of t-PA and plasminogen activator inhibitor-2 (PAI-2) synthesis by human gingival fibroblasts. Method: In the present study, the levels of t-PA and PAI-2 in gingival crevicular fluid (GCF) were measured from healthy, gingivitis and periodontitis sites and compared before and after periodontal treatment. Crevicular fluid from106 periodontal sites in 33 patients were collected. 24 sites from 11 periodontitis patients received periodontal treatment after the first sample collection and post-treatment samples were collected 14 days after treatment. All samples were analyzed by enzyme-linked immunosorbent assay (ELISA) for t-PA and PAI-2. Results: The results showed that significantly high levels of t-PA and PAI-2 in GCF were found in the gingivitis and periodontitis sites. Periodontal treatment led to significant decreases of PAI-2, but not t-PA, after 14 days. A significant positive linear correlation was found between t-PA and PAI-2 in GCF (r=0.80, p<0.01). In the healthy group, different sites from within the same subject showed little variation of t-PA and PAI-2 in GCF. However, the gingivitis and periodontitis sites showed large variation. These results suggest a good correlation between t-PA and PAI-2 with the severity of periodontal conditions. Conclusion: This study indicates that t-PA and PAI-2 may play a significant rôle in the periodontal tissue destruction and tissue remodeling and that t-PA and PAI-2 in GCF may be used as clinical markers to evaluate the periodontal diseases and assess treatment.
Resumo:
Objectives In non-alcoholic fatty liver disease (NAFLD), hepatic steatosis is intricately linked with a number of metabolic alterations. We studied substrate utilisation in NAFLD during basal, insulin-stimulated and exercise conditions, and correlated these outcomes with disease severity. Methods 20 patients with NAFLD (mean±SD body mass index (BMI) 34.1±6.7 kg/m2) and 15 healthy controls (BMI 23.4±2.7 kg/m2) were assessed. Respiratory quotient (RQ), whole-body fat (Fatox) and carbohydrate (CHOox) oxidation rates were determined by indirect calorimetry in three conditions: basal (resting and fasted), insulin-stimulated (hyperinsulinaemic–euglycaemic clamp) and exercise (cycling at an intensity to elicit maximal Fatox). Severity of disease and steatosis were determined by liver histology, hepatic Fatox from plasma β-hydroxybutyrate concentrations, aerobic fitness expressed as , and visceral adipose tissue (VAT) measured by computed tomography. Results Within the overweight/obese NAFLD cohort, basal RQ correlated positively with steatosis (r=0.57, p=0.01) and was higher (indicating smaller contribution of Fatox to energy expenditure) in patients with NAFLD activity score (NAS) ≥5 vs <5 (p=0.008). Both results were independent of VAT, % body fat and BMI. Compared with the lean control group, patients with NAFLD had lower basal whole-body Fatox (1.2±0.3 vs 1.5±0.4 mg/kgFFM/min, p=0.024) and lower basal hepatic Fatox (ie, β-hydroxybutyrate, p=0.004). During exercise, they achieved lower maximal Fatox (2.5±1.4 vs. 5.8±3.7 mg/kgFFM/min, p=0.002) and lower (p<0.001) than controls. Fatox during exercise was not associated with disease severity (p=0.79). Conclusions Overweight/obese patients with NAFLD had reduced hepatic Fatox and reduced whole-body Fatox under basal and exercise conditions. There was an inverse relationship between ability to oxidise fat in basal conditions and histological features of NAFLD including severity of steatosis and NAS
Resumo:
Pretretament is an essential and expensive processing step for the manufacturing of ethanol from lignocellulosic raw materials. Ionic liquids are a new class of solvents that have the potential to be used as pretreatment agents. The attractive characteristics of ionic liquid pretreatment of lignocellulosics such as thermal stability, dissolution properties, fractionation potential, cellulose decrystallisation capacity and saccharification impact are investigated in this thesis. Dissolution of bagasse with 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) at high temperatures (110 �‹C to 160 �‹C) is investigated as a pretreatment process. Material balances are reported and used along with enzymatic saccharification data to identify optimum pretreatment conditions (150 �‹C for 90 min). At these conditions, the dissolved and reprecipitated material is enriched in cellulose, has a low crystallinity and the cellulose component is efficiently hydrolysed (93 %, 3 h, 15 FPU). At pretreatment temperatures < 150 �‹C, the undissolved material has only slightly lower crystallinity than the starting. At pretreatment temperatures . 150 �‹C, the undissolved material has low crystallinity and when combined with the dissolved material has a saccharification rate and extent similar to completely dissolved material (100 %, 3h, 15 FPU). Complete dissolution is not necessary to maximize saccharification efficiency at temperatures . 150 �‹C. Fermentation of [C4mim]Cl-pretreated, enzyme-saccharified bagasse to ethanol is successfully conducted (85 % molar glucose-to-ethanol conversion efficiency). As compared to standard dilute acid pretreatment, the optimised [C4mim]Cl pretreatment achieves substantially higher ethanol yields (79 % cf. 52 %) in less than half the processing time (pretreatment, saccharification, fermentation). Fractionation of bagasse partially dissolved in [C4mim]Cl to a polysaccharide rich and a lignin rich fraction is attempted using aqueous biphasic systems (ABSs) and single phase systems with preferential precipitation. ABSs of ILs and concentrated aqueous inorganic salt solutions are achievable (e.g. [C4mim]Cl with 200 g L-1 NaOH), albeit they exhibit a number of technical problems including phase convergence (which increases with increasing biomass loading) and deprotonation of imidazolium ILs (5 % - 8 % mol). Single phase fractionation systems comprising lignin solvents / cellulose antisolvents, viz. NaOH (2M) and acetone in water (1:1, volume basis), afford solids with, respectively, 40 % mass and 29 % mass less lignin than water precipitated solids. However, this delignification imparts little increase in saccharification rates and extents of these solids. An alternative single phase fractionation system is achieved simply by using water as an antisolvent. Regulating the water : IL ratio results in a solution that precipitates cellulose and maintains lignin in solution (0.5 water : IL mass ratio) in both [C4mim]Cl and 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc)). This water based fractionation is applied in three IL pretreatments on bagasse ([C4mim]Cl, 1-ethyl-3-methyl imidazolium chloride ([C2mim]Cl) and [C2mim]OAc). Lignin removal of 10 %, 50 % and 60 % mass respectively is achieved although only 0.3 %, 1.5 % and 11.7 % is recoverable even after ample water addition (3.5 water : IL mass ratio) and acidification (pH . 1). In addition the recovered lignin fraction contains 70 % mass hemicelluloses. The delignified, cellulose-rich bagasse recovered from these three ILs is exposed to enzyme saccharification. The saccharification (24 h, 15 FPU) of the cellulose mass in starting bagasse, achieved by these pretreatments rank as: [C2mim]OAc (83 %)>>[C2mim]Cl (53 %)=[C4mim]Cl(53%). Mass balance determinations accounted for 97 % of starting bagasse mass for the [C4mim]Cl pretreatment , 81 % for [C2mim]Cl and 79 %for [C2mim]OAc. For all three IL treatments, the remaining bagasse mass (not accounted for by mass balance determinations) is mainly (more than half) lignin that is not recoverable from the liquid fraction. After pretreatment, 100 % mass of both ions of all three ILs were recovered in the liquid fraction. Compositional characteristics of [C2mim]OAc treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are opposite to those of chloride IL treated solids. The former biomass characteristics resemble those imparted by aqueous alkali pretreatment while the latter resemble those of aqueous acid pretreatments. The 100 % mass recovery of cellulose in [C2mim]OAc as opposed to 53 % mass recovery in [C2mim]Cl further demonstrates this since the cellulose glycosidic bonds are protected under alkali conditions. The alkyl chain length decrease in the imidazolium cation of these ILs imparts higher rates of dissolution and losses, and increases the severity of the treatment without changing the chemistry involved.
Resumo:
OBJECTIVE: To review and compare the mild traumatic brain injury (mTBI) vignettes used in postconcussion syndrome (PCS) research, and to develop 3 new vignettes. METHOD: The new vignettes were devised using World Health Organization (WHO) mTBI diagnostic criteria [1]. Each vignette depicted a very mild (VM), mild (M), or severe (S) brain injury. Expert review (N = 27) and readability analysis was used to validate the new vignettes and compare them to 5 existing vignettes. RESULTS: The response rate was 44%. The M vignette and existing vignettes were rated as depicting a mTBI; however, the fit-to-criteria of these vignettes differed significantly. The fit-to-criteria of the M vignette was as good as that of 3 existing vignettes and significantly better than 2 other vignettes. As expected, the VM and S vignettes were a poor fit-to-criteria. CONCLUSIONS: These new vignettes will assist PCS researchers to test the limits of important etiology factors by varying the severity of depicted injuries.
Resumo:
Separately, actinic keratosis (AK) and cutaneous squamous cell carcinoma (SCC) have been associated with cutaneous human papillomavirus (HPV) infections. To further explore the association between HPV infection and SCC development, we determined markers of cutaneous HPV infection within a single population in persons with precursor lesions (AK), cancerous lesions (SCC), and without. Serum and plucked eyebrow hairs were collected from 57 tumor-free controls, 126 AK, and 64 SCC cases. Presence of HPV L1 and E6 seroreactivity and viral DNA were determined for HPV types 5, 8, 15, 16, 20, 24, and 38. Significant positive associations with increasing severity of the lesions (controls, AK, and SCC, respectively) were observed for overall HPV L1 seropositivity (13%, 26%, and 37%) and for HPV8 (4%, 17%, and 30%). In parallel, the proportion of L1 seropositive individuals against multiple HPV types increased from 14% to 39% and 45%. The overall E6 seroreactivity, however, tended to decline with AK and SCC, especially for HPV8 (21%, 11%, and 2%). HPV DNA positivity was most prevalent in the AK cases (54%) compared with the SCC cases (44%) and the tumor-free controls (40%). Among all participants, there was a positive trend between overall HPV DNA positivity and L1 seropositivity, but not E6 seropositivity. Taken together, our data suggest that cutaneous HPV infections accompanied by detectable HPV DNA in eyebrow hairs and HPV L1 seropositivity, but not E6 seropositivity, are associated with an increased risk of AK and SCC.
Resumo:
The aim of this paper is to describe the prevalence and perceptions of pain and pain management amongst hospital in-patients. A cross-sectional descriptive survey of 205 patients was conducted. Presence and severity of pain was assessed using verbal descriptor and visual analogue scales, and perceptions of pain were assessed using multi-item scales. Although the severity of pain reported was consistent across age groups and clinical areas, women in the study sample were significantly more likely to report high levels of pain than men. Differences in how men and women communicate their pain were observed, with women indicating that they were less willing to ask for help with their pain. Results suggest that pain continues to be an important problem for a large number of men and women in hospital, and that the experience of pain impacts negatively upon their well-being. Gender differences in the experience of and response to pain remain important considerations for clinical nurses who have major responsibilities for the management of pain in hospitalized patients.
Resumo:
Background: High levels of distress and need for self-care information by patients commencing chemotherapy suggest that current prechemotherapy education is suboptimal. We conducted a randomised, controlled trial of a prechemotherapy education intervention (ChemoEd) to assess impact on patient distress, treatment-related concerns, and the prevalence and severity of and bother caused by six chemotherapy side-effects. Patients and methods: One hundred and ninety-two breast, gastrointestinal, and haematologic cancer patients were recruited before the trial closing prematurely (original target 352). ChemoEd patients received a DVD, question-prompt list, self-care information, an education consultation ≥24 h before first treatment (intervention 1), telephone follow-up 48 h after first treatment (intervention 2), and a face-to-face review immediately before second treatment (intervention 3). Patient outcomes were measured at baseline (T1: pre-education) and immediately preceding treatment cycles 1 (T2) and 3 (T3). Results: ChemoEd did not significantly reduce patient distress. However, a significant decrease in sensory/psychological (P = 0.027) and procedural (P = 0.03) concerns, as well as prevalence and severity of and bother due to vomiting (all P = 0.001), were observed at T3. In addition, subgroup analysis of patients with elevated distress at T1 indicated a significant decrease (P = 0.035) at T2 but not at T3 (P = 0.055) in ChemoEd patients. Conclusions: ChemoEd holds promise to improve patient treatment-related concerns and some physical/psychological outcomes; however, further research is required on more diverse patient populations to ensure generalisability.
Resumo:
Since March 2010 in Queensland, legislation has specified the type of restraint and seating row for child passengers under 7 years according to age. The following study explored regional parents’ child restraint practices and the influence of their health beliefs over these. A brief intercept interview was verbally administered to a convenience sample of parent-drivers (n = 123) in Toowoomba in February 2010, after the announcement of changes to legislation but prior to enforcement. Parents who agreed to be followed-up were then reinterviewed after the enforcement (May-June 2010). The Health Beliefs Model was used to gauge beliefs about susceptibility to crashing, children being injured in a crash, and likely severity of injuries. Self-efficacy and perceptions about barriers to, and benefits of, using age-appropriate restraints with children, were also assessed. Results: There were very high levels of rear seating reported for children (initial interview 91%; follow-up 100%). Dedicated child restraint use was 96.9% at initial interview, though 11% were deemed inappropriate for the child’s age. Self-reported restraint practices for children under 7 were used to categorise parental practices into ‘Appropriate’ (all children in age-appropriate restraint and rear seat) or ‘Inappropriate’ (≥1 child inappropriately restrained). 94% of parents were aware of the legislation, but only around one third gave accurate descriptions of the requirements. However, 89% of parents were deemed to have ‘Appropriate’ restraint practices. Parents with ‘Inappropriate’ practices were significantly more likely than those with ‘Appropriate’ practices to disagree that child restraints provide better protection for children in a crash than adult seatbelts. For self-efficacy, parents with ‘Appropriate’ practices were more likely than those with ‘Inappropriate’ practices to report being ‘completely confident’ about installing child restraints. The results suggest that efforts to increase the level of appropriate restraint should attempt to better inform them about the superior protection offered by child restraints compared with seat belts for children.
Resumo:
Background Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs). Methods Of the 291 diseases and injuries in the GBD cause list, 289 cause disability. For 1160 sequelae of the 289 diseases and injuries, we undertook a systematic analysis of prevalence, incidence, remission, duration, and excess mortality. Sources included published studies, case notification, population-based cancer registries, other disease registries, antenatal clinic serosurveillance, hospital discharge data, ambulatory care data, household surveys, other surveys, and cohort studies. For most sequelae, we used a Bayesian meta-regression method, DisMod-MR, designed to address key limitations in descriptive epidemiological data, including missing data, inconsistency, and large methodological variation between data sources. For some disorders, we used natural history models, geospatial models, back-calculation models (models calculating incidence from population mortality rates and case fatality), or registration completeness models (models adjusting for incomplete registration with health-system access and other covariates). Disability weights for 220 unique health states were used to capture the severity of health loss. YLDs by cause at age, sex, country, and year levels were adjusted for comorbidity with simulation methods. We included uncertainty estimates at all stages of the analysis. Findings Global prevalence for all ages combined in 2010 across the 1160 sequelae ranged from fewer than one case per 1 million people to 350 000 cases per 1 million people. Prevalence and severity of health loss were weakly correlated (correlation coefficient −0·37). In 2010, there were 777 million YLDs from all causes, up from 583 million in 1990. The main contributors to global YLDs were mental and behavioural disorders, musculoskeletal disorders, and diabetes or endocrine diseases. The leading specific causes of YLDs were much the same in 2010 as they were in 1990: low back pain, major depressive disorder, iron-deficiency anaemia, neck pain, chronic obstructive pulmonary disease, anxiety disorders, migraine, diabetes, and falls. Age-specific prevalence of YLDs increased with age in all regions and has decreased slightly from 1990 to 2010. Regional patterns of the leading causes of YLDs were more similar compared with years of life lost due to premature mortality. Neglected tropical diseases, HIV/AIDS, tuberculosis, malaria, and anaemia were important causes of YLDs in sub-Saharan Africa. Interpretation Rates of YLDs per 100 000 people have remained largely constant over time but rise steadily with age. Population growth and ageing have increased YLD numbers and crude rates over the past two decades. Prevalences of the most common causes of YLDs, such as mental and behavioural disorders and musculoskeletal disorders, have not decreased. Health systems will need to address the needs of the rising numbers of individuals with a range of disorders that largely cause disability but not mortality. Quantification of the burden of non-fatal health outcomes will be crucial to understand how well health systems are responding to these challenges. Effective and affordable strategies to deal with this rising burden are an urgent priority for health systems in most parts of the world. Funding Bill & Melinda Gates Foundation.