134 resultados para selver-staining
Resumo:
Regeneration and growth of the human endometrium after shedding of the functional layer during menstruation depends on an adequate angiogenic response. We analysed the mRNA expression levels of all known vascular endothelial growth factor (VEGF) ligands and receptors in human endometrium collected in the menstrual and proliferative phases of the menstrual cycle. In addition, we evaluated the expression of VEGF-A, VEGF-R2 and NRP-1 at the protein level. Two periods of elevated mRNA expression of ligands and receptors were observed, separated by a distinct drop at cycle days (CDs) 9 and 10. Immunohistochemical staining showed that VEGF and VEGF-R2 were expressed in epithelial, stromal and endothelial cells. NRP-1 was mainly confined to stroma and blood vessels; only in late-proliferative endometrium, epithelial staining was also observed. Except for endothelial VEGF-R2 expression in CDs 6-8, there were no significant differences in the expression of VEGF, VEGF-R2 or NRP-1 in any of the cell compartments. In contrast, VEGF release by cultured human endometrium explants decreased during the proliferative phase. This output was significantly reduced in menstrual and early-proliferative endometrium by estradiol (E2) treatment. Western blot analysis indicated that part of the VEGF-A was trapped in the extracellular matrix (ECM). Changes in VEGF ligands and receptors were associated with elevated expression of the hypoxia markers HIF1 alpha and CA-IX in the menstrual and early proliferative phases. HIF1 alpha was also detected in late-proliferative phase endometrium. Our findings indicate that VEGF-A exerts its actions mostly during the first half of the proliferative phase. Furthermore, VEGF-A production appears to be triggered by hypoxia in the menstrual phase and subsequently suppressed toy estrogen during the late proliferative phase.
Resumo:
Introduction Novel imaging techniques for prostate cancer (PCa) are required to improve staging and real-time assessment of therapeutic response. We performed preclinical evaluation of newly-developed, biocompatible magnetic nanoparticles (MNPs) conjugated with J591, an antibody specific for prostate specific membrane antigen (PSMA), to enhance magnetic resonance imaging (MRI) of PCa. PSMA is expressed on ∼90% of PCa, including those that are castrate-resistant, rendering it as a rational target for PCa imaging. Materials and Methods The specificity of J591 for PSMA was confirmed by flow cytometric analysis of several PCa cell lines of known PSMA status. MNPs were prepared, engineered to the appropriate size, labeled with DiR fluorophore, and their toxicity to a panel of PC cells was assessed by in vitro Alamar Blue assay. Immunohistochemistry, fluorescence microscopy and Prussian Blue staining (iron uptake) were used to evaluate PSMA specificity of J591-MNP conjugates. In vivo MRI studies (16.4T MRI system) were performed using live immunodeficient mice bearing orthotopic LNCaP xenografts and injected intravenously with J591-MNPs or MNPs alone. Results MNPs were non-toxic to PCa cells. J591-MNP conjugates showed no compromise in specificity of binding to PSMA+ cells and showed enhanced iron uptake compared with MNPs alone. In vivo, tumour targeting (significant MR image contrast) was evident in mice injected with J591-MNPs, but not MNPs alone. Resected tumours from targeted mice had an accumulation of MNPs, not seen in normal control prostate. Conclusions Application of PSMA-targeting MNPs into conventional MRI has potential to enhance PCa detection and localization in real-time, improving patient management.
Resumo:
To identify specific markers of rectovaginal endometriotic nodule vasculature, highly enriched preparations of vascular endothelial cells and pericytes were obtained from endometriotic nodules and control endometrial and myometrial tissue by laser capture microdissection (LCM), and gene expression profiles were screened by microarray analysis. Of the 18 400 transcripts on the arrays, 734 were significantly overexpressed in vessels from fibromuscular tissue and 923 in vessels from stromal tissue of endometriotic nodules, compared with vessels dissected from control tissues. The most frequently expressed transcripts included known endothelial cell-associated genes, as well as transcripts with little or no previous association with vascular cells. The higher expression in blood vessels was further corroborated by immunohistochemical staining of six potential markers, five of which showed strong expression in pericytes. The most promising marker was matrix Gla protein, which was found to be present in both glandular epithelial cells and vascular endothelial cells of endometriotic lesions, although it was barely expressed at all in normal endometrium. LCM, combined with microarray analysis, constitutes a powerful tool for mapping the transcriptome of vascular cells. After immunohistochemical validation, markers of vascular endothelial and perivascular cells from endometriotic nodules could be identified, which may provide targets to improve early diagnosis or to selectively deliver therapeutic agents.
Resumo:
We characterised the effects of selective oestrogen receptor modulators (SERM) in explant cultures of human endometrium tissue. Endometrium tissues were cultured for 24 h in Millicell-CM culture inserts in serum-free medium in the presence of vehicle,17 beta-estradiol (17 beta-E2,1 nM), oestrogen receptor (ER) antagonist ICI 164.384 (40 nM), and 4-OH-tamoxifen (40 nM), raloxifene (4 nM), lasofoxifene (4 nM)and acolbifene (4 nM). Protein expression of ER alpha, ER beta 1 and Ki-67 were evaluated by immunohistochemistry (IHC). The proliferative fraction was assessed by counting the number of Ki-67 positive cells. Nuclear staining of ER( and ER(1 was observed in the glandular epithelium and stroma of pre- and postmenopausal endometrium. ER(1 protein was also localized in the endothelial cells of blood vessels. Treating premenopausal endometrium tissue with 17 beta-E2 increased the fraction of Ki-67 positive cells (p < 0.001) by 55% in glands compared to the control. Raloxifene (4 nM) increased (p < 0.05) the Ki-67 positive fraction. All other SERMS did not affect proliferation in this model. Treating postmenopausal endometrium with 17(-E2 increased (p < 0.001) the fraction of Ki-67 positive cells by 250% in glands compared to the control. A similar effect was also seen for 4-OH-tamoxifen, whereas the rest of SERMs did not stimulate proliferation. We demonstrated that oestradiol increases the fraction of proliferating cells in short term explant cultures of postmenopausal endometrium. In addition, we were able to reveal the agonistic properties of 4-OH-tamoxifen and confirm that raloxifene and next-generation SERMs acolbifene and lasofoxifene were neutral on the human postmenopausal endometrium. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE: The prevalence of anaplastic lymphoma kinase (ALK) gene fusion (ALK positivity) in early-stage non-small-cell lung cancer (NSCLC) varies by population examined and detection method used. The Lungscape ALK project was designed to address the prevalence and prognostic impact of ALK positivity in resected lung adenocarcinoma in a primarily European population. METHODS: Analysis of ALK status was performed by immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) in tissue sections of 1,281 patients with adenocarcinoma in the European Thoracic Oncology Platform Lungscape iBiobank. Positive patients were matched with negative patients in a 1:2 ratio, both for IHC and for FISH testing. Testing was performed in 16 participating centers, using the same protocol after passing external quality assessment. RESULTS: Positive ALK IHC staining was present in 80 patients (prevalence of 6.2%; 95% CI, 4.9% to 7.6%). Of these, 28 patients were ALK FISH positive, corresponding to a lower bound for the prevalence of FISH positivity of 2.2%. FISH specificity was 100%, and FISH sensitivity was 35.0% (95% CI, 24.7% to 46.5%), with a sensitivity value of 81.3% (95% CI, 63.6% to 92.8%) for IHC 2+/3+ patients. The hazard of death for FISH-positive patients was lower than for IHC-negative patients (P = .022). Multivariable models, adjusted for patient, tumor, and treatment characteristics, and matched cohort analysis confirmed that ALK FISH positivity is a predictor for better overall survival (OS). CONCLUSION: In this large cohort of surgically resected lung adenocarcinomas, the prevalence of ALK positivity was 6.2% using IHC and at least 2.2% using FISH. A screening strategy based on IHC or H-score could be envisaged. ALK positivity (by either IHC or FISH) was related to better OS.
Resumo:
PURPOSE The purpose of this study was to demonstrate the potential of near infrared (NIR) spectroscopy for characterizing the health and degenerative state of articular cartilage based on the components of the Mankin score. METHODS Three models of osteoarthritic degeneration induced in laboratory rats by anterior cruciate ligament (ACL) transection, meniscectomy (MSX), and intra-articular injection of monoiodoacetate (1 mg) (MIA) were used in this study. Degeneration was induced in the right knee joint; each model group consisted of 12 rats (N = 36). After 8 weeks, the animals were euthanized and knee joints were collected. A custom-made diffuse reflectance NIR probe of 5-mm diameter was placed on the tibial and femoral surfaces, and spectral data were acquired from each specimen in the wave number range of 4,000 to 12,500 cm(-1). After spectral data acquisition, the specimens were fixed and safranin O staining (SOS) was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis, with spectral preprocessing and wavelength selection technique, the spectral data were then correlated to the structural integrity (SI), cellularity (CEL), and matrix staining (SOS) components of the Mankin score for all the samples tested. RESULTS ACL models showed mild cartilage degeneration, MSX models had moderate degeneration, and MIA models showed severe cartilage degenerative changes both morphologically and histologically. Our results reveal significant linear correlations between the NIR absorption spectra and SI (R(2) = 94.78%), CEL (R(2) = 88.03%), and SOS (R(2) = 96.39%) parameters of all samples in the models. In addition, clustering of the samples according to their level of degeneration, with respect to the Mankin components, was also observed. CONCLUSIONS NIR spectroscopic probing of articular cartilage can potentially provide critical information about the health of articular cartilage matrix in early and advanced stages of osteoarthritis (OA). CLINICAL RELEVANCE This rapid nondestructive method can facilitate clinical appraisal of articular cartilage integrity during arthroscopic surgery.
Resumo:
The aim of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter gamma-aminobutyric acid (GABAB), in human aortic smooth muscle cells (HASMCs), and to explore if altering receptor activation modified intracellular Ca(2+) concentration ([Ca(2+)]i) of HASMCs. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABABR1 and GABABR2 in cultured HASMCs. Immunohistochemistry was used to localize the two subunits in human left anterior descending artery (LAD). The effects of the GABAB receptor agonist baclofen on [Ca(2+)]i in cultured HASMCs were demonstrated using fluo-3. Both GABABR1 and GABABR2 mRNA and protein were identified in cultured HASMCs and antibody staining was also localized to smooth muscle cells of human LAD. 100 μM baclofen caused a transient increase of [Ca(2+)]i in cultured HASMCs regardless of whether Ca(2+) was added to the medium, and the effects were inhibited by pre-treatment with CGP46381 (selective GABAB receptor antagonist), pertussis toxin (a Gi/o protein inhibitor), and U73122 (a phospholipase C blocker). GABAB receptors are expressed in HASMCs and regulate the [Ca(2+)]i via a Gi/o-coupled receptor pathway and a phospholipase C activation pathway
Resumo:
GABAB receptors associate with Gi/o-proteins that regulate voltage-gated Ca(2+) channels and thus the intracellular Ca(2+) concentration ([Ca(2+)]i), there is also reported cross-regulation of phospholipase C. These associations have been studied extensively in the brain and also shown to occur in non-neural cells (e.g. human airway smooth muscle). More recently GABAB receptors have been observed in chick retinal pigment epithelium (RPE). The aims were to investigate whether the GABAB receptor subunits, GABAB1 and GABAB2, are co-expressed in cultured human RPE cells, and then determine if the GABAB receptor similarly regulates the [Ca(2+)]i of RPE cells and if phospholipase C is involved. Human RPE cells were cultured from 5 donor eye cups. Evidence for GABAB1 and GABAB2 mRNAs and proteins in the RPE cell cultures were investigated using real time PCR, western blots and immunofluorescence. The effects of the GABAB receptor agonist baclofen, antagonist CGP46381, a Gi/o-protein inhibitor pertussis toxin, and the phospholipase C inhibitor U73122 on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo-3. Both GABAB1 and GABAB2 mRNA and protein were identified in cell cultures of human RPE; antibody staining was co-localized to the cell membrane and cytoplasm. One-hundred μM baclofen caused a transient increase in the [Ca(2+)]i of RPE cells regardless of whether Ca(2+) was added to the buffer. Baclofen induced increases in the [Ca(2+)]i were attenuated by pre-treatment with CGP46381, pertussis toxin, and U73122. GABAB1 and GABAB2 are co-expressed in cell cultures of human RPE. GABAB receptors in RPE regulate the [Ca(2+)]i via a Gi/o-protein and phospholipase C pathway.
Resumo:
Background Understanding the progression of prostate cancer to androgen-independence/castrate resistance and development of preclinical testing models are important for developing new prostate cancer therapies. This report describes studies performed 30 years ago, which demonstrate utility and shortfalls of xenografting to preclinical modeling. Methods We subcutaneously implanted male nude mice with small prostate cancer fragments from transurethral resection of the prostate (TURP) from 29 patients. Successful xenografts were passaged into new host mice. They were characterized using histology, immunohistochemistry for marker expression, flow cytometry for ploidy status, and in some cases by electron microscopy and response to testosterone. Two xenografts were karyotyped by G-banding. Results Tissues from 3/29 donors (10%) gave rise to xenografts that were successfully serially passaged in vivo. Two, (UCRU-PR-1, which subsequently was replaced by a mouse fibrosarcoma, and UCRU-PR-2, which combined epithelial and neuroendocrine features) have been described. UCRU-PR-4 line was a poorly differentiated prostatic adenocarcinoma derived from a patient who had undergone estrogen therapy and bilateral castration after his cancer relapsed. Histologically, this comprised diffusely infiltrating small acinar cell carcinoma with more solid aggregates of poorly differentiated adenocarcinoma. The xenografted line showed histology consistent with a poorly differentiated adenocarcinoma and stained positively for prostatic acid phosphatase (PAcP), epithelial membrane antigen (EMA) and the cytokeratin cocktail, CAM5.2, with weak staining for prostate specific antigen (PSA). The line failed to grow in female nude mice. Castration of three male nude mice after xenograft establishment resulted in cessation of growth in one, growth regression in another and transient growth in another, suggesting that some cells had retained androgen sensitivity. The karyotype (from passage 1) was 43–46, XY, dic(1;12)(p11;p11), der(3)t(3:?5)(q13;q13), -5, inv(7)(p15q35) x2, +add(7)(p13), add(8)(p22), add(11)(p14), add(13)(p11), add(20)(p12), -22, +r4[cp8]. Conclusions Xenografts provide a clinically relevant model of prostate cancer, although establishing serially transplantable prostate cancer patient derived xenografts is challenging and requires rigorous characterization and high quality starting material. Xenografting from advanced prostate cancer is more likely to succeed, as xenografting from well differentiated, localized disease has not been achieved in our experience. Strong translational correlations can be demonstrated between the clinical disease state and the xenograft model
Resumo:
Artemisinin induced dormancy is a proposed mechanism for failures of mono-therapy and is linked with artemisinin resistance in Plasmodium falciparum. The biological characterization and dynamics of dormant parasites are not well understood. Here we report that following dihydroartemisinin (DHA) treatment in vitro, a small subset of morphologically dormant parasites was stained with rhodamine 123 (RH), a mitochondrial membrane potential (MMP) marker, and persisted to recovery. FACS sorted RH-positive parasites resumed growth at 10,000/well while RH-negative parasites failed to recover at 5 million/well. Furthermore, transcriptional activity for mitochondrial enzymes was only detected in RH-positive dormant parasites. Importantly, after treating dormant parasites with different concentrations of atovaquone, a mitochondrial inhibitor, the recovery of dormant parasites was delayed or stopped. This demonstrates that mitochondrial activity is critical for survival and regrowth of dormant parasites and that RH staining provides a means of identifying these parasites. These findings provide novel paths for studying and eradicating this dormant stage.
Resumo:
Introduction Hydrogels prepared from poly(ethylene glycol) (PEG) and maleimide-functionalized heparin provide a potential matrix for use in developing three dimensional (3D) models. We have previously demonstrated that these hydrogels support the cultivation of human umbilical vein endothelial cells (HUVECs) (1). We extend this body of work to study the ability to create an extracellular matrix (ECM)-like model to study breast and prostate cancer cell growth in 3D. Also, we investigate the ability to produce a tri-culture mimicking tumour angiogenesis with cancer spheroids, HUVECs and mesenchymal stem cells (MSC). Materials and Methods The breast cancer cell lines, MCF-7 and MDA-MB-231, and prostate cancer cell lines, LNCaP and PC3, were seeded into starPEG-heparin hydrogels and grown for 14 Days to analyse the effects of varying hydrogel stiffness on spheroid development. Resulting hydrogel constructs were analyzed via Alamar Blue assays, light microscopy, and immunofluorescence staining for cytokeratin 8/18, Ki67 and E-Cadherin. Cancer cell lines were then pre-grown in hydrogels for 5-7 days and then re-seeded into starPEG-heparin hydrogels functionalised with RGD, SDF-1, bFGF and VEGF as spheroids with HUVECs and MSC and grown for 14 days as a tri-culture in Endothelial Cell Growth Medium (ECGM; Promocell). Cell lines were also seeded as a single cell suspension into the functionalised tri-culture system. Cultures were fixed in 4% paraformaldehyde and analysed via immunostaining for Von Willebrand Factor and CD31, as well as the above mentioned markers, and observed using confocal microscopy. Results Cultures prepared in MMP-cleavable starPEG-heparin hydrogels display spheroid formation in contrast to adherent growth on tissue culture plastic. Small differences were visualised in cancer spheroid growth between different gel stiffness across the range of cell lines. Cancer cell lines were able to be co-cultivated with HUVECs and MSC. HUVEC tube formation and cancer line spheroid formation occured after 3-4 days. Interaction was visualised between tumours and HUVECs via confocal microscopy. Slightly increased interaction was seen between cancer tumours and micro-vascular tubes when seeded as single cells compared with the pre-formed spheroid approach. Further studies intend to utilise cytokine gradients to further optimise the ECM environment of in situ tumour angiogenesis. Discussion and Conclusions Our results confirm the suitability of hydrogels constructed from starPEG-heparin for HUVECs and MSC co-cultivation with cancer cell lines to study cell-cell and cell-matrix interactions in a 3D environment. This represents a step forward in the development of 3D culture models to study the pathomechanisms of breast and prostate cancer. References 1. Tsurkan MV, Chwalek K, Prokoph S, Zieris A, Levental KR, Freudenberg U, Werner C. Advanced Materials. 25, 2606-10, 2013. Disclosures The authors declare no conflicts of interest
Resumo:
Background Ugni molinae Turcz. is one of the most studied species of South American Myrtaceae due to its edible fruits and foliar medicinal compounds. However, there is no anatomical study of the leaves or secretory cavities. This paper seeks to describe the leaf micromorphology and anatomy of the species using standard protocols for light and scanning electron microscopy. Secretory cavities were anatomically characterized in young and mature leaves. Histochemical staining of the cavities was performed. Results The leaves of U. molinae are hypostomatic, have a wavy surface and possess scattered hairs. Leaf anatomical features include dorsiventral mesophyll, two to three layers of palisade parenchyma with abundant chloroplasts, calcium oxalate crystals and internal phloem in vascular bundles. Schizogenous secretory cavities are present on the abaxial surface and are mainly located on the margins of the leaves. Histochemical tests of these cavities suggest the presence of lipophilic substances. Conclusions This is the first study of secretory cavities in Chilean Myrtaceae. In general, micromorphological and anatomical characters are similar to other species of the family. The present findings could provide valuable anatomical information for future research in South American Myrtaceae.
Resumo:
Currently used xenograft models for prostate cancer bone metastasis lack the adequate tissue composition necessary to study the interactions between human prostate cancer cells and the human bone microenvironment. We introduce a tissue engineering approach to explore the interactions between human tumor cells and a humanized bone microenvironment. Scaffolds, seeded with human primary osteoblasts in conjunction with BMP7, were implanted into immunodeficient mice to form humanized tissue engineered bone constructs (hTEBCs) which consequently resulted in the generation of highly vascularized and viable humanized bone. At 12 weeks, PC3 and LNCaP cells were injected into the hTEBCs. Seven weeks later the mice were euthanized. Micro-CT, histology, TRAP, PTHrP and osteocalcin staining results reflected the different characteristics of the two cell lines regarding their phenotypic growth pattern within bone. Microvessel density, as assessed by vWF staining, showed that tumor vessel density was significantly higher in LNCaP injected hTEBC implants than in those injected with PC3 cells (p\0.001). Interestingly, PC3 cells showed morphological features of epithelial and mesenchymal phenotypes suggesting a cellular plasticity within this microenvironment. Taken together, a highly reproducible humanized model was established which is successful in generating LNCaP and PC3 tumors within a complex humanized bone microenvironment. This model simulates the conditions seen clinically more closely than any other model described in the literature to date and hence represents a powerful experimental platform that can be used in future work to investigate specific biological questions relevant to bone metastasis.
Resumo:
Despite monolayer cultures being widely used for cancer drug development and testing, 2D cultures tend to be hypersensitive to chemotherapy and are relatively poor predictors of whether a drug will provide clinical benefit. Whilst generally more complicated, three dimensional (3D) culture systems often better recapitulate true cancer architecture and provide a more accurate drug response. As a step towards making 3D cancer cultures more accessible, we have developed a microwell platform and surface modification protocol to enable high throughput manufacture of 3D cancer aggregates. Herein we use this novel system to characterize prostate cancer cell microaggregates, including growth kinetics and drug sensitivity. Our results indicate that prostate cancer cells are viable in this system, however some non-cancerous prostate cell lines are not. This system allows us to consistently control for the presence or absence of an apoptotic core in the 3D cancer microaggregates. Similar to tumor tissues, the 3D microaggregates display poor polarity. Critically the response of 3D microaggregates to the chemotherapeutic drug, docetaxel, is more consistent with in vivo results than the equivalent 2D controls. Cumulatively, our results demonstrate that these prostate cancer microaggregates better recapitulate the morphology of prostate tumors compared to 2D and can be used for high-throughput drug testing.
Resumo:
Background Ephrin-B2 is the sole physiologically-relevant ligand of the receptor tyrosine kinase EphB4, which is over-expressed in many epithelial cancers, including 66% of prostate cancers, and contributes to cancer cell survival, invasion and migration. Crucially, however, the cancer-promoting EphB4 signalling pathways are independent of interaction with its ligand ephrin-B2, as activation of ligand-dependent signalling causes tumour suppression. Ephrin-B2, however, is often found on the surface of endothelial cells of the tumour vasculature, where it can regulate angiogenesis to support tumour growth. Proteolytic cleavage of endothelial cell ephrin-B2 has previously been suggested as one mechanism whereby the interaction between tumour cell-expressed EphB4 and endothelial cell ephrin-B2 is regulated to support both cancer promotion and angiogenesis. Methods An in silico approach was used to search accessible surfaces of 3D protein models for cleavage sites for the key prostate cancer serine protease, KLK4, and this identified murine ephrin-B2 as a potential KLK4 substrate. Mouse ephrin-B2 was then confirmed as a KLK4 substrate by in vitro incubation of recombinant mouse ephrin-B2 with active recombinant human KLK4. Cleavage products were visualised by SDS-PAGE, silver staining and Western blot and confirmed by N-terminal sequencing. Results At low molar ratios, KLK4 cleaved murine ephrin-B2 but other prostate-specific KLK family members (KLK2 and KLK3/PSA) were less efficient, suggesting cleavage was KLK4-selective. The primary KLK4 cleavage site in murine ephrin-B2 was verified and shown to correspond to one of the in silico predicted sites between extracellular domain residues arginine 178 and asparagine 179. Surprisingly, the highly homologous human ephrin-B2 was poorly cleaved by KLK4 at these low molar ratios, likely due to the 3 amino acid differences at this primary cleavage site. Conclusion These data suggest that in in vivo mouse xenograft models, endogenous mouse ephrin-B2, but not human tumour ephrin-B2, may be a downstream target of cancer cell secreted human KLK4. This is a critical consideration when interpreting data from murine explants of human EphB4+/KLK4+ cancer cells, such as prostate cancer cells, where differential effects may be seen in mouse models as opposed to human clinical situations.