172 resultados para pitch-scaling
Resumo:
Appearance-based localization is increasingly used for loop closure detection in metric SLAM systems. Since it relies only upon the appearance-based similarity between images from two locations, it can perform loop closure regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale linearly not only with the size of the environment but also with the operation time of the platform. These properties impose severe restrictions on longterm autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. We present a set of improvements to the appearance-based SLAM algorithm CAT-SLAM to constrain computation scaling and memory usage with minimal degradation in performance over time. The appearance-based comparison stage is accelerated by exploiting properties of the particle observation update, and nodes in the continuous trajectory map are removed according to minimal information loss criteria. We demonstrate constant time and space loop closure detection in a large urban environment with recall performance exceeding FAB-MAP by a factor of 3 at 100% precision, and investigate the minimum computational and memory requirements for maintaining mapping performance.
Resumo:
This paper describes system identification, estimation and control of translational motion and heading angle for a cost effective open-source quadcopter — the MikroKopter. The dynamics of its built-in sensors, roll and pitch attitude controller, and system latencies are determined and used to design a computationally inexpensive multi-rate velocity estimator that fuses data from the built-in inertial sensors and a low-rate onboard laser range finder. Control is performed using a nested loop structure that is also computationally inexpensive and incorporates different sensors. Experimental results for the estimator and closed-loop positioning are presented and compared with ground truth from a motion capture system.
Resumo:
For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.
Resumo:
Purpose: The objective was to investigate the association between corneal sensitivity and established measures of diabetic peripheral neuropathy (DPN). Methods: Corneal sensitivity was measured in 93 individuals with diabetes, 146 diabetic individuals without neuropathy and 61 control individuals without diabetes or neuropathy using a non-contact corneal aesthesiometer at the baseline visit of a five-year longitudinal natural history study of DPN. The correlation between corneal sensitivity and established measures of neuropathy was estimated and multi-dimensional scaling was used to represent similarities and dissimilarities between variables. Results: The corneal sensitivity threshold was significantly correlated with a majority of established measures of DPN. Correlation coefficients ranged from -0.32 to 0.26. Using multi-dimensional scaling, non-contact corneal aesthesiometry was closer to the neuropathy disability score, diabetic neuropathy symptom score and Neuropad and most dissimilar to electrophysiological parameters and quantitative sensory testing. Conclusion: Corneal sensitivity, although not strongly related, is associated with other functional measures of DPN and might provide a useful adjunct in identifying functional loss of small nerve fibre integrity.
Resumo:
This paper introduces PartSS, a new partition-based fil- tering for tasks performing string comparisons under edit distance constraints. PartSS offers improvements over the state-of-the-art method NGPP with the implementation of a new partitioning scheme and also improves filtering abil- ities by exploiting theoretical results on shifting and scaling ranges, thus accelerating the rate of calculating edit distance between strings. PartSS filtering has been implemented within two major tasks of data integration: similarity join and approximate membership extraction under edit distance constraints. The evaluation on an extensive range of real-world datasets demonstrates major gain in efficiency over NGPP and QGrams approaches.
Resumo:
The three main contributors to the war on Iraq in March 2003 (the United States, United Kingdom and Australia) are also the three most significant countries in which Rupert Murdoch's News Corporation operates. This article examines the degree of editorial conformity (or otherwise) that existed across the news media of News Corporation in six months leading to the invasion. It compares the framing of the arguments for war and finds significant similarities across the three countries, especially in the output of columnists and commentators employed by News Corporation. While generally pro-war, however, News Corporation outlets also displayed local variations in the caution or stridency of their editorial pitch as well as the degree of toleration for debate. The extent and significance of these variations are used in the article to argue for the development of a more complex political economy model in the study of private news media bias.
Resumo:
The unsteady boundary-layer development for thermomagnetic convection of paramagnetic fluids inside a square cavity has been considered in this study. The cavity is placed in a microgravity condition (no gravitation acceleration) and under a uniform magnetic field which acts vertically. A ramp temperature boundary condition is applied on left vertical side wall of the cavity where the temperature initially increases with time up to some specific time and maintain constant thereafter. A distinct magnetic convection boundary layer is developed adjacent to the left vertical wall due to the effect of the magnetic body force generated on the paramagnetic fluid. An improved scaling analysis has been performed using triple-layer integral method and verified by numerical simulations. The Prandtl number has been chosen greater than unity varied over 5-100. Moreover, the effect of various values of the magnetic parameter and magnetic Rayleigh number on the fluid flow and heat transfer has been shown.
Resumo:
This study evaluated effects of defensive pressure on running velocity in footballers during the approach to kick a stationary football. Approach velocity and ball speed/accuracy data were recorded from eight football youth academy participants (15.25, SD=0.46 yrs). Participants were required to run to a football to cross it to a receiver to score against a goal-keeper. Defensive pressure was manipulated across three counterbalanced conditions: defender-absent (DA); defender-far (DF) and defender-near (DN). Pass accuracy (percentages of a total of 32 trials with 95% confidence limits in parenthesis) did not significantly reduce under changing defensive pressure: DA, 78% (55–100%); DF, 78% (61–96%); DN, 59% (40–79%). Ball speed (m·s−1) significantly reduced as defensive pressure was included and increased: DA, 23.10 (22.38–23.83); DF, 20.40 (19.69–21.11); DN, 19.22 (18.51–19.93). When defensive pressure was introduced, average running velocity of attackers did not change significantly: DA versus DF (m·s−1), 5.40 (5.30–5.51) versus 5.41 (5.34–5.48). Scaling defender starting positions closer to the start position of the attacker (DN) significantly increased average running velocity relative to the DA and DF conditions, 5.60 (5.50–5.71). In the final approach footfalls, all conditions significantly differed: DA, 5.69 (5.35–6.03); DF, 6 .22 (5.93–6.50); DN, 6.52 (6.23–6.80). Data suggested that approach velocity is constrained by both presence and initial distance of the defender during task performance. Implications are that the expression of kicking behaviour is specific to a performance context and some movement regulation features will not emerge unless a defender is present as a task constraint in practice.
Resumo:
Objectives The relationship between performance variability and accuracy in cricket fast bowlers of different skill levels under three different task conditions was investigated. Bowlers of different skill levels were examined to observe if they could adapt movement patterns to maintain performance accuracy on a bowling skills test. Design 8 national, 12 emerging and 12 junior pace bowlers completed an adapted version of the Cricket Australia bowling skills test, in which they performed 30 trials involving short (n = 10), good (n = 10), and full (n = 10) length deliveries. Methods Bowling accuracy was recorded by digitising ball position relative to the centre of a target. Performance measures were mean radial error (accuracy), variable error (consistency), centroid error (bias), bowling score and ball speed. Radial error changes across the duration of the skills test were used to record accuracy adjustment in subsequent deliveries. Results Elite fast bowlers performed better in speed, accuracy, and test scores than developing athletes. Bowlers who were less variable were also more accurate across all delivery lengths. National and emerging bowlers were able to adapt subsequent performance trials within the same bowling session for short length deliveries. Conclusions Accuracy and adaptive variability were key components of elite performance in fast bowling which improved with skill level. In this study, only national elite bowlers showed requisite levels of adaptive variability to bowl a range of lengths to different pitch locations.
Resumo:
Production of nanofibrous polyacrylonitrile/calcium carbonate (PAN/CaCO3) nanocomposite web was carried out through solution electrospinning process. Pore generating nanoparticles were leached from the PAN matrices in hydrochloric acid bath with the purpose of producing an ultimate nanoporous structure. The possible interaction between CaCO3 nanoparticles and PAN functional groups was investigated. Atomic absorption method was used to measure the amount of extracted CaCO3 nanoparticles. Morphological observation showed nanofibers of 270–720 nm in diameter containing nanopores of 50–130 nm. Monitoring the governing parameters statistically, it was found that the amount of extraction (ε) of CaCO3was increased when the web surface area (a) was broadened according to a simple scaling law (ε = 3.18 a0.4). The leaching process was maximized in the presence of 5% v/v of acid in the extraction bath and 5 wt % of CaCO3 in the polymer solution. Collateral effects of the extraction time and temperature showed exponential growth within a favorable extremum at 50°C for 72 h. Concentration of dimethylformamide as the solvent had no significant impact on the extraction level.
Resumo:
Modelling how a word is activated in human memory is an important requirement for determining the probability of recall of a word in an extra-list cueing experiment. Previous research assumed a quantum-like model in which the semantic network was modelled as entangled qubits, however the level of activation was clearly being over-estimated. This paper explores three variations of this model, each of which are distinguished by a scaling factor designed to compensate the overestimation.
Resumo:
This paper presents a nonlinear gust-attenuation controller based on constrained neural-network (NN) theory. The controller aims to achieve sufficient stability and handling quality for a fixed-wing unmanned aerial system (UAS) in a gusty environment when control inputs are subjected to constraints. Constraints in inputs emulate situations where aircraft actuators fail requiring the aircraft to be operated with fail-safe capability. The proposed controller enables gust-attenuation property and stabilizes the aircraft dynamics in a gusty environment. The proposed flight controller is obtained by solving the Hamilton-Jacobi-Isaacs (HJI) equations based on an policy iteration (PI) approach. Performance of the controller is evaluated using a high-fidelity six degree-of-freedom Shadow UAS model. Simulations show that our controller demonstrates great performance improvement in a gusty environment, especially in angle-of-attack (AOA), pitch and pitch rate. Comparative studies are conducted with the proportional-integral-derivative (PID) controllers, justifying the efficiency of our controller and verifying its suitability for integration into the design of flight control systems for forced landing of UASs.
Resumo:
Aim The objective is to establish determinants of drink-driving and its association with traffic crashes in Ghana. Methods A multivariable logistic regression was used to establish significant determinants of drink-driving and a bivariate logistic regression to establish the association between drink–driving and road traffic crashes in Ghana. Results In total, 2,736 motorists were randomly stopped for breath testing of whom 8.7% tested positive for alcohol. Among the total participants, 5.5% exceeded the legal BAC limit of 0.08%. Formal education is associated with a reduced likelihood of drink-driving compared with drivers without formal education. The propensity to drink-drive is 1.8 times higher among illiterate drivers compared with drivers with basic education. Young adult drivers also recorded elevated likelihoods for driving under alcohol impairment compared with adult drivers. The odds of drink-driving among truck drivers is OR=1.81, (95% CI=1.16 to 2.82) and two wheeler riders is OR=1.41, (95% CI=0.47 to 4.28) compared with car drivers. Contrary to general perception, commercial car drivers have a significant reduced likelihood of 41%, OR=0.59, (95% CI=0.38 to 0.92) compared with the private car driver. Bivariate analysis conducted showed a significant association between the proportion of drivers exceeding the legal BAC limit and road traffic fatalities, p<0.001. The model predicts a 1% increase in the proportion of drivers exceeding the legal BAC to be associated with a 4% increase in road traffic fatalities, 95% CI= 3% to 5% and vice versa. Conclusion A positive and significant association between roadside alcohol prevalence and road traffic fatality has been established. Scaling up roadside breath test, determining standard drink and disseminating to the populace and formulating policies targeting the youth such as increasing minimum legal drinking age and reduced legal BAC limit for the youth and novice drivers might improve drink-driving related crashes in Ghana.
Resumo:
In this paper, we describe a method to represent and discover adversarial group behavior in a continuous domain. In comparison to other types of behavior, adversarial behavior is heavily structured as the location of a player (or agent) is dependent both on their teammates and adversaries, in addition to the tactics or strategies of the team. We present a method which can exploit this relationship through the use of a spatiotemporal basis model. As players constantly change roles during a match, we show that employing a "role-based" representation instead of one based on player "identity" can best exploit the playing structure. As vision-based systems currently do not provide perfect detection/tracking (e.g. missed or false detections), we show that our compact representation can effectively "denoise" erroneous detections as well as enabe temporal analysis, which was previously prohibitive due to the dimensionality of the signal. To evaluate our approach, we used a fully instrumented field-hockey pitch with 8 fixed high-definition (HD) cameras and evaluated our approach on approximately 200,000 frames of data from a state-of-the-art real-time player detector and compare it to manually labelled data.
Resumo:
Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.