125 resultados para incompressible fluid
Resumo:
In this paper, we used a nonconservative Lagrangian mechanics approach to formulate a new statistical algorithm for fluid registration of 3-D brain images. This algorithm is named SAFIRA, acronym for statistically-assisted fluid image registration algorithm. A nonstatistical version of this algorithm was implemented, where the deformation was regularized by penalizing deviations from a zero rate of strain. In, the terms regularizing the deformation included the covariance of the deformation matrices Σ and the vector fields (q). Here, we used a Lagrangian framework to reformulate this algorithm, showing that the regularizing terms essentially allow nonconservative work to occur during the flow. Given 3-D brain images from a group of subjects, vector fields and their corresponding deformation matrices are computed in a first round of registrations using the nonstatistical implementation. Covariance matrices for both the deformation matrices and the vector fields are then obtained and incorporated (separately or jointly) in the nonconservative terms, creating four versions of SAFIRA. We evaluated and compared our algorithms' performance on 92 3-D brain scans from healthy monozygotic and dizygotic twins; 2-D validations are also shown for corpus callosum shapes delineated at midline in the same subjects. After preliminary tests to demonstrate each method, we compared their detection power using tensor-based morphometry (TBM), a technique to analyze local volumetric differences in brain structure. We compared the accuracy of each algorithm variant using various statistical metrics derived from the images and deformation fields. All these tests were also run with a traditional fluid method, which has been quite widely used in TBM studies. The versions incorporating vector-based empirical statistics on brain variation were consistently more accurate than their counterparts, when used for automated volumetric quantification in new brain images. This suggests the advantages of this approach for large-scale neuroimaging studies.
Resumo:
We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or $J$-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the $J$-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.
Resumo:
Despite substantial progress in measuring the 3D profile of anatomical variations in the human brain, their genetic and environmental causes remain enigmatic. We developed an automated system to identify and map genetic and environmental effects on brain structure in large brain MRI databases . We applied our multi-template segmentation approach ("Multi-Atlas Fluid Image Alignment") to fluidly propagate hand-labeled parameterized surface meshes into 116 scans of twins (60 identical, 56 fraternal), labeling the lateral ventricles. Mesh surfaces were averaged within subjects to minimize segmentation error. We fitted quantitative genetic models at each of 30,000 surface points to measure the proportion of shape variance attributable to (1) genetic differences among subjects, (2) environmental influences unique to each individual, and (3) shared environmental effects. Surface-based statistical maps revealed 3D heritability patterns, and their significance, with and without adjustments for global brain scale. These maps visualized detailed profiles of environmental versus genetic influences on the brain, extending genetic models to spatially detailed, automatically computed, 3D maps.
Resumo:
Robust and automatic non-rigid registration depends on many parameters that have not yet been systematically explored. Here we determined how tissue classification influences non-linear fluid registration of brain MRI. Twin data is ideal for studying this question, as volumetric correlations between corresponding brain regions that are under genetic control should be higher in monozygotic twins (MZ) who share 100% of their genes when compared to dizygotic twins (DZ) who share half their genes on average. When these substructure volumes are quantified using tensor-based morphometry, improved registration can be defined based on which method gives higher MZ twin correlations when compared to DZs, as registration errors tend to deplete these correlations. In a study of 92 subjects, higher effect sizes were found in cumulative distribution functions derived from statistical maps when performing tissue classification before fluid registration, versus fluidly registering the raw images. This gives empirical evidence in favor of pre-segmenting images for tensor-based morphometry.
Resumo:
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles in brain MRI scans, providing an efficient approach to monitor degenerative disease in clinical studies and drug trials. First, we used a set of parameterized surfaces to represent the ventricles in four subjects' manually labeled brain MRI scans (atlases). We fluidly registered each atlas and mesh model to MRIs from 17 Alzheimer's disease (AD) patients and 13 age- and gender-matched healthy elderly control subjects, and 18 asymptomatic ApoE4-carriers and 18 age- and gender-matched non-carriers. We examined genotyped healthy subjects with the goal of detecting subtle effects of a gene that confers heightened risk for Alzheimer's disease. We averaged the meshes extracted for each 3D MR data set, and combined the automated segmentations with a radial mapping approach to localize ventricular shape differences in patients. Validation experiments comparing automated and expert manual segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease- and gene-related alterations improved, as the number of atlases, N, was increased from 1 to 9. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases. We formulated a statistical stopping criterion to determine the optimal number of atlases to use. Healthy ApoE4-carriers and those with AD showed local ventricular abnormalities. This high-throughput method for morphometric studies further motivates the combination of genetic and neuroimaging strategies in predicting AD progression and treatment response. © 2007 Elsevier Inc. All rights reserved.
Resumo:
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles, designed for monitoring degenerative disease effects in clinical neuroscience studies and drug trials. First we used a set of parameterized surfaces to represent the ventricles in a manually labeled set of 9 subjects' MRIs (atlases). We fluidly registered each of these atlases and mesh models to a set of MRIs from 12 Alzheimer's disease (AD) patients and 14 matched healthy elderly subjects, and we averaged the resulting meshes for each of these images. Validation experiments on expert segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease-related alterations monotonically improved as the number of atlases, N, was increased from 1 to 9. We then combined the segmentations with a radial mapping approach to localize ventricular shape differences in patients. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases, and we formulated a statistical stopping criterion to determine the optimal value of N. Anterior horn anomalies in Alzheimer's patients were only detected with the multi-atlas segmentation, which clearly outperformed the standard single-atlas approach.
Resumo:
The Warburton Basin of central Australia has experienced a complex tectonic and fluid-flow history, resulting in the formation of various authigenic minerals. Geochemical and geochronological analyses were undertaken on vein carbonates from core samples of clastic sediments. Results were then integrated with zircon U–Pb dating and uraninite U–Th–total Pb dating from the underlying granite. Stable and radiogenic isotopes (δ18O, Sr and εNd), as well as trace element data of carbonate veins indicate that >200 °C basinal fluids of evolved meteoric origin circulated through the Warburton Basin. Almost coincidental ages of these carbonates (Sm–Nd; 432 ± 12 Ma) with primary zircon (421 ± 3.8 Ma) and uraninite (407 ± 16 Ma) ages from the granitic intrusion point towards a substantial period of active tectonism and an elevated thermal regime during the mid Silurian. We hypothesise that such a thermal regime may have resulted from extensional tectonism and concomitant magmatic activity following regional orogenesis. This study shows that the combined application of geochemical and geochronological analyses of both primary and secondary species may constrain the timing of tectonomagmatic events and associated fluid flow in intraplate sedimentary basins. Furthermore, this work suggests that the Sm–Nd-isotopic system is surprisingly robust and can record geologically meaningful age data from hydrothermal mineral species.
Resumo:
Cardiovascular disease is the leading causes of death in the developed world. Wall shear stress (WSS) is associated with the initiation and progression of atherogenesis. This study combined the recent advances in MR imaging and computational fluid dynamics (CFD) and evaluated the patient-specific carotid bifurcation. The patient was followed up for 3 years. The geometry changes (tortuosity, curvature, ICA/CCA area ratios, central to the cross-sectional curvature, maximum stenosis) and the CFD factors (Velocity distribute, Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI)) were compared at different time points.The carotid stenosis was a slight increase in the central to the cross-sectional curvature, and it was minor and variable curvature changes for carotid centerline. The OSI distribution presents ahigh-values in the same region where carotid stenosis and normal border, indicating complex flow and recirculation.The significant geometric changes observed during the follow-up may also cause significant changes in bifurcation hemodynamics.
Resumo:
Rupture of atherosclerotic plaque is a major cause of mortality. Plaque stress analysis, based on patient-specific multisequence in vivo MRI, can provide critical information for the understanding of plaque rupture and could eventually lead to plaque rupture prediction. However, the direct link between stress and plaque rupture is not fully understood. In the present study, the plaque from a patient who recently experienced a transient ischaemic attack (TIA) was studied using a fluid-structure interaction method to quantify stress distribution in the plaque region based on in vivo MR images. The results showed that wall shear stress is generally low in the artery with a slight increase at the plaque throat owing to minor luminal narrowing. The oscillatory shear index is much higher in the proximal part of the plaque. Both local wall stress concentrations and the relative stress variation distribution during a cardiac cycle indicate that the actual plaque rupture site is collocated with the highest rupture risk region in the studied patient.
Resumo:
Atherosclerotic plaque rupture has been extensively considered as the leading cause of death in western countries. It is believed that high stresses within plaque can be an important factor on triggering the rupture of the plaque. Stress analysis in the coronary and carotid arteries with plaque have been developed by many researchers from 2D to 3-D models, from structure analysis only to the Fluid-Structure Interaction (FSI) models[1].
Resumo:
Atherosclerotic plaque rupture has been extensively considered as the leading cause of death in the world. It is believed that high stress within plaque can be an important factor which can trigger the rupture of the plaque. High resolution multi-spectral magnetic resonance imaging (MRI) has allowed the plaque components (arterial wall, lipids, and fibrous cap) to be visualized in vivo [1]. The patient specific finite element model can be generated from the image data to perform stress analysis and provide critical information on understanding plaque rupture mechanisms [2]. The present work is to apply the procedure to a total of 14 patients (S1 ∼ S14), to study the stress distributions on carotid artery plaque reconstructed from multi-spectral magnetic resonance images, and the possible relationships between stress and plaque burdens.
Resumo:
The rupture of atherosclerotic plaques is known to be associated with the stresses that act on or within the arterial wall. The extreme wall tensile stress (WTS) is usually recognized as a primary trigger for the rupture of vulnerable plaque. The present study used the in-vivo high-resolution multi-spectral magnetic resonance imaging (MRI) for carotid arterial plaque morphology reconstruction. Image segmentation of different plaque components was based on the multi-spectral MRI and co-registered with different sequences for the patient. Stress analysis was performed on totally four subjects with different plaque burden by fluid-structure interaction (FSI) simulations. Wall shear stress distributions are highly related to the degree of stenosis, while the level of its magnitude is much lower than the WTS in the fibrous cap. WTS is higher in the luminal wall and lower at the outer wall, with the lowest stress at the lipid region. Local stress concentrations are well confined in the thinner fibrous cap region, and usually locating in the plaque shoulder; the introduction of relative stress variation during a cycle in the fibrous cap can be a potential indicator for plaque fatigue process in the thin fibrous cap. According to stress analysis of the four subjects, a risk assessment in terms of mechanical factors could be made, which may be helpful in clinical practice. However, more subjects with patient specific analysis are desirable for plaque-stability study.
Resumo:
Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.
Resumo:
Burn injury is a prevalent and traumatic event for pediatric patients. At present, the diagnosis of burn injury severity is subjective and lacks a clinically relevant quantitative measure. This is due in part to a lack of knowledge surrounding the biochemistry of burn injuries and that of blister fluid. A more complete understanding of the blister fluid biochemistry may open new avenues for diagnostic and prognostic development. Burn insult induces a highly complex network of signaling processes and numerous changes within various biochemical systems, which can ultimately be examined using proteome and metabolome measurements. This review reports on the current understanding of burn wound biochemistry and outlines a technical approach for ‘omics’ profiling of blister fluid from burn wounds of differing severity.
Resumo:
This paper presents the design, implementation and evaluation of a collaborative learning activity designed to replace traditional face-to-face lectures in a large classroom. This activity aims to better engage the students with their learning and improve the students’ experience and outcomes. This project is implemented in the Fluid Mechanics unit of the Mechanical Engineering degree at the Queensland University of Technology to introduce students with the concept, terminology and process of Computational Fluid Dynamics (CFD). The approach integrates a constructive collaborative assignment which is a key element in the overall quality of teaching and learning, and an integral component of the students’ experience. A detailed survey, given to the students, showed an overall high level of satisfaction. However, the results also highlighted the gap between students’ expectations both for contents and assignment and teacher expectations. Discussions to address this issue are presented in the paper based on a critical reflection.