470 resultados para freshwater influence
Resumo:
Increases in atmospheric concentrations of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) due to human activities have been linked to climate change. GHG emissions from land use change and agriculture have been identified as significant contributors to both Australia’s and the global GHG budget. This is expected to increase over the coming decades as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on CO2, CH4 and N2O trace gas fluxes from subtropical or tropical soils and land uses. To develop effective mitigation strategies a full global warming potential (GWP) accounting methodology is required that includes emissions of the three primary greenhouse gases. Mitigation strategies that focus on one gas only can inadvertently increase emissions of another. For this reason, detailed inventories of GHGs from soils and vegetation under individual land uses are urgently required for subtropical Australia. This study aimed to quantify GHG emissions over two consecutive years from three major land uses; a well-established, unfertilized subtropical grass-legume pasture, a 30 year (lychee) orchard and a remnant subtropical Gallery rainforest, all located near Mooloolah, Queensland. GHG fluxes were measured using a combination of high resolution automated sampling, coarser spatial manual sampling and laboratory incubations. Comparison between the land uses revealed that land use change can have a substantial impact on the GWP on a landscape long after the deforestation event. The conversion of rainforest to agricultural land resulted in as much as a 17 fold increase in GWP, from 251 kg CO2 eq. ha-1 yr-1 in the rainforest to 889 kg CO2 eq. ha-1 yr-1 in the pasture to 2538 kg CO2 eq. ha-1 yr-1 in the lychee plantation. This increase resulted from altered N cycling and a reduction in the aerobic capacity of the soil in the pasture and lychee systems, enhancing denitrification and nitrification events, and reducing atmospheric CH4 uptake in the soil. High infiltration, drainage and subsequent soil aeration under the rainforest limited N2O loss, as well as promoting CH4 uptake of 11.2 g CH4-C ha-1 day-1. This was among the highest reported for rainforest systems, indicating that aerated subtropical rainforests can act as substantial sink of CH4. Interannual climatic variation resulted in significantly higher N2O emission from the pasture during 2008 (5.7 g N2O-N ha day) compared to 2007 (3.9 g N2O-N ha day), despite receiving nearly 500 mm less rainfall. Nitrous oxide emissions from the pasture were highest during the summer months and were highly episodic, related more to the magnitude and distribution of rain events rather than soil moisture alone. Mean N2O emissions from the lychee plantation increased from an average of 4.0 g N2O-N ha-1 day-1, to 19.8 g N2O-N ha-1 day-1 following a split application of N fertilizer (560 kg N ha-1, equivalent to 1 kg N tree-1). The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (emission factor (EF): 1.79%) compared to autumn (EF: 0.91%). This was attributed to the hot and moist climatic conditions and a reduction in plant N uptake during the spring creating conditions conducive to N2O loss. These findings demonstrate that land use change in subtropical Australia can be a significant source of GHGs. Moreover, the study shows that modifying the timing of fertilizer application can be an efficient way of reducing GHG emissions from subtropical horticulture.
Resumo:
A set of non-nested longitudinal models tested the relationships between personal and workplace resources, well-being and work engagement. The reciprocal model, trimmed of trivial paths had the best fit and parsimony. The model showed the strong influences of concurrent functioning, stability of variables over time and weaker reciprocal relationships between variables across time. Individuals with greater confidence in themselves and the future experience better work conditions and have greater well-being and work engagement. These day-to-day influences are equalled by the long term strength and stability of Individual Factors, Positive Workplace Factors, and Overall Well-Being. Whilst the reciprocal paths had only weak to mild effects, there was mutual reinforcement of Individual Factors and Overall Well-Being, with Positive Workplace Factors and Work Engagement counterbalancing each other, indicating a more complex relationship. Well-being, particularly, is anchored in the immediate and distant past and provides a robust stability to functioning into the future.
Resumo:
The paper details the results of the first phase of an on-going research into the sociocultural factors that influence the supervision of higher degrees research (HDR) engineering students in the Faculty of Built Environment and Engineering (BEE) and Faculty of Science and Technology (FaST) at Queensland University of Technology. A quantitative analysis was performed on the results from an online survey that was administered to 179 engineering students. The study reveals that cultural barriers impact their progression and developing confidence in their research programs. We argue that in order to assist international and non-English speaking background (NESB) research students to triumph over such culturally embedded challenges in engineering research, it is important for supervisors to understand this cohort's unique pedagogical needs and develop intercultural sensitivity in their pedagogical practice in postgraduate research supervision. To facilitate this, the governing body (Office of Research) can play a vital role in not only creating the required support structures but also their uniform implementation across the board.
Resumo:
The common approach to estimate bus dwell time at a BRT station platform is to apply the traditional dwell time methodology derived for suburban bus stops. Current dwell time models are sensitive towards bus type, fare collection policy along with the number of boarding and alighting passengers. However, they fall short in accounting for the effects of passenger/s walking on a relatively longer BRT station platform. Analysis presented in this paper shows that the average walking time of a passenger at BRT platform is 10 times more than that of bus stop. The requirement of walking to the bus entry door at the BRT station platform may lead to the bus experiencing a higher dwell time. This paper presents a theory for a BRT network which explains the loss of station capacity during peak period operation. It also highlights shortcomings of present available bus dwell time models suggested for the analysis of BRT operation.
Resumo:
Microstructural (fabric, forces and composition) changes due to hydrocarbon contamination in a clay soil were studied using Scanning Electron Microscope (micro-fabric analysis), Atomic Force Microscope (forces measurement) and sedimentation bench test (particle size measurements). The non-polluted and polluted glacial till from north-eastern Poland (area of a fuel terminal) were used for the study. Electrostatic repelling forces for the polluted sample were much lower than for the non-polluted sample. In comparison to non-polluted sample, the polluted sample exhibited lower electric charge, attractive forces on approach and strong adhesion on retrieve. The results of the sedimentation tests indicate that clay particles form larger aggregates and settle out of the suspension rapidly in diesel oil. In non-polluted soil, the fabric is strongly aggregated – densely packed, dominate the face-to-face and edge-to-edge types of contacts, clay film tightly adheres to the surface of larger grains and interparticle pores are more common. In polluted soil, the clay matrix is less aggregated – loosely packed, dominate the edge-to-face types of contacts and inter-micro-aggregate pores are more frequent. Substantial differences were observed in the morphometric and geometrical parameters of pore space. The polluted soil micro-fabric proved to be more isotropic and less oriented than in non-polluted soil. The polluted soil, in which electrostatic forces were suppressed by hydrocarbon interaction, displays more open porosity and larger voids than non-polluted soil, which is characterized by occurrence of the strong electrostatic interaction between clay particles.
Resumo:
Hot spot identification (HSID) plays a significant role in improving the safety of transportation networks. Numerous HSID methods have been proposed, developed, and evaluated in the literature. The vast majority of HSID methods reported and evaluated in the literature assume that crash data are complete, reliable, and accurate. Crash under-reporting, however, has long been recognized as a threat to the accuracy and completeness of historical traffic crash records. As a natural continuation of prior studies, the paper evaluates the influence that under-reported crashes exert on HSID methods. To conduct the evaluation, five groups of data gathered from Arizona Department of Transportation (ADOT) over the course of three years are adjusted to account for fifteen different assumed levels of under-reporting. Three identification methods are evaluated: simple ranking (SR), empirical Bayes (EB) and full Bayes (FB). Various threshold levels for establishing hotspots are explored. Finally, two evaluation criteria are compared across HSID methods. The results illustrate that the identification bias—the ability to correctly identify at risk sites--under-reporting is influenced by the degree of under-reporting. Comparatively speaking, crash under-reporting has the largest influence on the FB method and the least influence on the SR method. Additionally, the impact is positively related to the percentage of the under-reported PDO crashes and inversely related to the percentage of the under-reported injury crashes. This finding is significant because it reveals that despite PDO crashes being least severe and costly, they have the most significant influence on the accuracy of HSID.
Resumo:
Among the many factors that influence enforcement agencies, this article examines the role of the institutional location (and independence) of agencies, and an incumbent government's ideology. It is argued that institutional location affects the level of political influence on the agency's operations, while government ideology affects its willingness to resource enforcement agencies and approve regulatory activities. Evidence from the agency regulating minimum labour standards in the Australian federal industrial relations jurisdiction (currently the Fair Work Ombudsman) highlights two divergences from the regulatory enforcement literature generally. First, notions of independence from political interference offered by institutional location are more illusory than real and, second, political need motivates political action to a greater extent than political ideology.
Resumo:
In recent years, the application of heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works on the titanium dioxide (TiO2) photocatalytic oxidation of pesticides and phenolic compounds, predominant in storm and waste water effluents. The effect of various operating parameters on the photocatalytic degradation of pesticides and phenols are discussed. Results reported here suggested that the photocatalytic degradation of organic compounds depends on the type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, catalyst application mode, and calcinations temperature in water environment. A substantial amount of research has focused on the enhancement of TiO2 photocatalysis by modification with metal, non-metal and ion doping. Recent developments in TiO2 photocatalysis for the degradation of various pesticides and phenols are also highlighted in this review. It is evident from the literature survey that photocatalysis has shown good potential for the removal of various organic pollutants. However, still there is a need to find out the practical utility of this technique on commercial scale.
Resumo:
The purpose of this paper is to frame effective models of arts management for Australia in the nineties and beyond based on an analysis of historical practices. The evolutionary process of government subvention of the arts through non-profit arts organisations provides a clear statement of the role of power and influence. In particular the ascendancy of arts organisations and their management constitute a background against which to study other non-profit corporations.
Resumo:
This study investigates the influence of the built environment upon residents' sense of familiarity, concept of self and thus, their facilitation of place through the theory of "The Bondage of Imposed Visual Discourse". Simone de Beauvoir's theory "The Bondage of Feminine Elegance" provides the conceptual understanding of the visual discourse between the physicality of clothing and the wearer's personal identity. This fashion theory is transposed to explore the influence of the built environment's physicality upon aged care residents' personal identity. This paper presents findings from a study of professionals' opinions in reference to the built environment of permanent residential aged care for the 'oldest-old' of Australia. The researcher conducted qualitative interviews with four participants: an architect, occupational therapist, nursing home facility manager and an aged care lobbyist in the South-East Queensland. This study is structured towards proposing "place-focused" qualitative design principles to encourage residents' sense of place through the built environment. These proposed principles are addressed with reference to existing Standards and Principles outlined by the Australian Government.
Resumo:
Biochars produced by slow pyrolysis of greenwaste (GW), poultry litter (PL), papermill waste (PS), and biosolids (BS) were shown to reduce N2O emissions from an acidic Ferrosol. Similar reductions were observed for the untreated GW feedstock. Soil was amended with biochar or feedstock giving application rates of 1 and 5%. Following an initial incubation, nitrogen (N) was added at 165 kg/ha as urea. Microcosms were again incubated before being brought to 100% water-filled porosity and held at this water content for a further 47 days. The flooding phase accounted for the majority (<80%) of total N2O emissions. The control soil released 3165 mg N2O-N/m2, or 15.1% of the available N as N2O. Amendment with 1 and 5% GW feedstock significantly reduced emissions to 1470 and 636 mg N2O-N/m2, respectively. This was equivalent to 8.6 and 3.8% of applied N. The GW biochar produced at 350°C was least effective in reducing emissions, resulting in 1625 and 1705 mg N2O-N/m2 for 1 and 5% amendments. Amendment with BS biochar at 5% had the greatest impact, reducing emissions to 518 mg N2O-N/m2, or 2.2% of the applied N over the incubation period. Metabolic activity as measured by CO2 production could not explain the differences in N2O emissions between controls and amendments, nor could NH4+ or NO3– concentrations in biochar-amended soils. A decrease in NH4+ and NO3– following GW feedstock application is likely to have been responsible for reducing N2O emissions from this amendment. Reduction in N2O emissions from the biochar-amended soils was attributed to increased adsorption of NO3–. Small reductions are possible due to improved aeration and porosity leading to lower levels of denitrification and N2O emissions. Alternatively, increased pH was observed, which can drive denitrification through to dinitrogen during soil flooding.