253 resultados para extreme weather events
Resumo:
To detect and annotate the key events of live sports videos, we need to tackle the semantic gaps of audio-visual information. Previous work has successfully extracted semantic from the time-stamped web match reports, which are synchronized with the video contents. However, web and social media articles with no time-stamps have not been fully leveraged, despite they are increasingly used to complement the coverage of major sporting tournaments. This paper aims to address this limitation using a novel multimodal summarization framework that is based on sentiment analysis and players' popularity. It uses audiovisual contents, web articles, blogs, and commentators' speech to automatically annotate and visualize the key events and key players in a sports tournament coverage. The experimental results demonstrate that the automatically generated video summaries are aligned with the events identified from the official website match reports.
Resumo:
This paper presents channel measurements and weather data collection experiments conducted in a rural environment for an innovative Multi-User-Single-Antenna (MUSA) MIMO-OFDM technology, proposed for rural areas. MUSA MIMO-OFDM uplink channels are established by placing six user terminals (UT) around one access point (AP). Generated terrain profiles and relative received power plots are presented based on the experimental data. According to the relative received signal, MUSA-MIMO-OFDM uplink channels experience temporal fading. Moreover, the correlation between the relative received power and weather variables are presented. Results show that all weather variables exhibit a negative average correlation with received power. Wind speed records the highest average negative correlation coefficient of -0.35. Local maxima of negative correlation, ranging from 0.49 to 0.78, between the weather variables and relative received signals were registered between 5-6 a.m. The highest measured correlation (-0.78) of this time of the day was exhibited by wind speed. These results show the extend of time variation effects experienced by MUSA-MIMO-OFDM channels deployed in rural environments.
Resumo:
Background Apart from helmets, little is known about the effectiveness of motorcycle protective clothing in reducing injuries in crashes. The study aimed to quantify the association between usage of motorcycle clothing and injury in crashes. Methods and findings Cross-sectional analytic study. Crashed motorcyclists (n = 212, 71% of identified eligible cases) were recruited through hospitals and motorcycle repair services. Data was obtained through structured face-to-face interviews. The main outcome was hospitalization and motorcycle crash-related injury. Poisson regression was used to estimate relative risk (RR) and 95% confidence intervals for injury adjusting for potential confounders. Results Motorcyclists were significantly less likely to be admitted to hospital if they crashed wearing motorcycle jackets (RR = 0.79, 95% CI: 0.69–0.91), pants (RR = 0.49, 95% CI: 0.25–0.94), or gloves (RR = 0.41, 95% CI: 0.26–0.66). When garments included fitted body armour there was a significantly reduced risk of injury to the upper body (RR = 0.77, 95% CI: 0.66–0.89), hands and wrists (RR = 0.55, 95% CI: 0.38–0.81), legs (RR = 0.60, 95% CI: 0.40–0.90), feet and ankles (RR = 0.54, 95% CI: 0.35–0.83). Non-motorcycle boots were also associated with a reduced risk of injury compared to shoes or joggers (RR = 0.46, 95% CI: 0.28–0.75). No association between use of body armour and risk of fracture injuries was detected. A substantial proportion of motorcycle designed gloves (25.7%), jackets (29.7%) and pants (28.1%) were assessed to have failed due to material damage in the crash. Conclusions Motorcycle protective clothing is associated with reduced risk and severity of crash related injury and hospitalization, particularly when fitted with body armour. The proportion of clothing items that failed under crash conditions indicates a need for improved quality control. While mandating usage of protective clothing is not recommended, consideration could be given to providing incentives for usage of protective clothing, such as tax exemptions for safety gear, health insurance premium reductions and rebates.
Resumo:
Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO2) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO2 moieties to a sulfide phase was observed using XPS.
Resumo:
A series of polymers with a comb architecture were prepared where the poly(olefin sulfone) backbone was designed to be highly sensitive to extreme ultraviolet (EUV) radiation, while the well-defined poly(methyl methacrylate) (PMMA) arms were incorporated with the aim of increasing structural stability. It is hypothesized that upon EUV radiation rapid degradation of the polysulfone backbone will occur leaving behind the well-defined PMMA arms. The synthesized polymers were characterised and have had their performance as chain-scission EUV photoresists evaluated. It was found that all materials possess high sensitivity towards degradation by EUV radiation (E0 in the range 4–6 mJ cm−2). Selective degradation of the poly(1-pentene sulfone) backbone relative to the PMMA arms was demonstrated by mass spectrometry headspace analysis during EUV irradiation and by grazing-angle ATR-FTIR. EUV interference patterning has shown that materials are capable of resolving 30 nm 1:1 line:space features. The incorporation of PMMA was found to increase the structural integrity of the patterned features. Thus, it has been shown that terpolymer materials possessing a highly sensitive poly(olefin sulfone) backbone and PMMA arms are able to provide a tuneable materials platform for chain scission EUV resists. These materials have the potential to benefit applications that require nanopattering, such as computer chip manufacture and nano-MEMS.
Resumo:
A series of high-performance polycarbonates have been prepared with glass-transition temperatures and decomposition temperatures that are tunable by varying the repeat-unit chemical structure. Patterning of the polymers with extreme UV lithography has been achieved by taking advantage of direct photoinduced chain scission of the polymer chains, which results in a molecular-weight based solubility switch. After selective development of the irradiated regions of the polymers, feature sizes as small as 28.6 nm have been printed and the importance of resist-developer interactions for maximizing image quality has been demonstrated.
Resumo:
Some initial EUVL patterning results for polycarbonate based non-chemically amplified resists are presented. Without full optimization the developer a resolution of 60 nm line spaces could be obtained. With slight overexposure (1.4 × E0) 43.5 nm lines at a half pitch of 50 nm could be printed. At 2x E0 a 28.6 nm lines at a half pitch of 50 nm could be obtained with a LER that was just above expected for mask roughness. Upon being irradiated with EUV photons, these polymers undergo chain scission with the loss of carbon dioxide and carbon monoxide. The remaining photoproducts appear to be non-volatile under standard EUV irradiation conditions, but do exhibit increased solubility in developer compared to the unirradiated polymer. The sensitivity of the polymers to EUV light is related to their oxygen content and ways to increase the sensitivity of the polymers to 10 mJ cm-2 is discussed.
Resumo:
This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFix(TM) plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse Fix(TM) plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments.
Resumo:
INTRODUCTION: Workforce planning for first aid and medical coverage of mass gatherings is hampered by limited research. In particular, the characteristics and likely presentation patterns of low-volume mass gatherings of between several hundred to several thousand people are poorly described in the existing literature. OBJECTIVES: This study was conducted to: 1. Describe key patient and event characteristics of medical presentations at a series of mass gatherings, including events smaller than those previously described in the literature; 2. Determine whether event type and event size affect the mean number of patients presenting for treatment per event, and specifically, whether the 1:2,000 deployment rule used by St John Ambulance Australia is appropriate; and 3. Identify factors that are predictive of injury at mass gatherings. METHODS: A retrospective, observational, case-series design was used to examine all cases treated by two Divisions of St John Ambulance (Queensland) in the greater metropolitan Brisbane region over a three-year period (01 January 2002-31 December 2004). Data were obtained from routinely collected patient treatment forms completed by St John officers at the time of treatment. Event-related data (e.g., weather, event size) were obtained from event forms designed for this study. Outcome measures include: total and average number of patient presentations for each event; event type; and event size category. Descriptive analyses were conducted using chi-square tests, and mean presentations per event and event type were investigated using Kruskal-Wallis tests. Logistic regression analyses were used to identify variables independently associated with injury presentation (compared with non-injury presentations). RESULTS: Over the three-year study period, St John Ambulance officers treated 705 patients over 156 separate events. The mean number of patients who presented with any medical condition at small events (less than or equal to 2,000 attendees) did not differ significantly from that of large (>2,000 attendees) events (4.44 vs. 4.67, F = 0.72, df = 1, 154, p = 0.79). Logistic regression analyses indicated that presentation with an injury compared with non-injury was independently associated with male gender, winter season, and sporting events, even after adjusting for relevant variables. CONCLUSIONS: In this study of low-volume mass gatherings, a similar number of patients sought medical treatment at small (<2,000 patrons) and large (>2,000 patrons) events. This demonstrates that for low-volume mass gatherings, planning based solely on anticipated event size may be flawed, and could lead to inappropriate levels of first-aid coverage. This study also highlights the importance of considering other factors, such as event type and patient characteristics, when determining appropriate first-aid resourcing for low-volume events. Additionally, identification of factors predictive of injury presentations at mass gatherings has the potential to significantly enhance the ability of event coordinators to plan effective prevention strategies and response capability for these events.
Resumo:
Video games have shown great potential as tools that both engage and motivate players to achieve tasks and build communities in fantasy worlds. We propose that the application of game elements to real world activities can aid in delivering contextual information in interesting ways and help young people to engage in everyday events. Our research will explore how we can unite utility and fun to enhance information delivery, encourage participation, build communities and engage users with utilitarian events situated in the real world. This research aims to identify key game elements that work effectively to engage young digital natives, and provide guidelines to influence the design of interactions and interfaces for event applications in the future. This research will primarily contribute to areas of user experience and pervasive gaming.