256 resultados para exploratory factor analysis
Resumo:
Benefit finding is a meaning making construct that has been shown to be related to adjustment in people with MS and their carers. This study investigated the dimensions, stability and potency of benefit finding in predicting adjustment over a 12 month interval using a newly developed Benefit Finding in Multiple Sclerosis Scale (BFiMSS). Usable data from 388 persons with MS and 232 carers was obtained from questionnaires completed at Time 1 and 12 months later (Time 2). Factor analysis of the BFiMSS revealed seven psychometrically sound factors: Compassion/Empathy, Spiritual Growth, Mindfulness, Family Relations Growth, Life Style Gains, Personal Growth, New Opportunities. BFiMSS total and factors showed satisfactory internal and retest reliability coefficients, and convergent, criterion and external validity. Results of regression analyses indicated that the Time 1 BFiMSS factors accounted for significant amounts of variance in each of the Time 2 adjustment outcomes (positive states of mind, positive affect, anxiety, depression) after controlling for Time 1 adjustment, and relevant demographic and illness variables. Findings delineate the dimensional structure of benefit finding in MS, the differential links between benefit finding dimensions and adjustment and the temporal unfolding of benefit finding in chronic illness.
Resumo:
This article describes the theoretical underpinning and development of a measurement instrument that provides teachers with a tool to observe the personal creativity characteristics of individual students. The instrument was developed by compiling a list of characteristics derived from the literature to be indicative of the personal characteristics of creative people. The list was then reduced by grouping like characteristics to 9 cognitive and dispositional traits that were considered appropriate for elementary students. The 9-item instrument was then administered in 24 classrooms to 520 Year 6 and Year 7 students. Factor analysis using maximum likelihood extraction with an oblimin rotation revealed a single factor with an eigenvalue greater than 1 and accounting for 63% of the variance. All 9 items on this factor loaded at .72 or greater. The results indicated that the Creativity Checklist has very high internal consistency and is a reliable measurement instrument (a = .93).
Resumo:
This study aimed to develop and assess the reliability and validity of a pair of self-report questionnaires to measure self-efficacy and expectancy associated with benzodiazepine use, the Benzodiazepine Refusal Self- Efficacy Questionnaire (BRSEQ) and the Benzodiazepine Expectancy Questionnaire (BEQ). Internal structure of the questionnaireswas established by principal component analysis (PCA) in a sample of 155 respondents, and verified by confirmatory factor analyses (CFA) in a second independent sample (n=139) using structural equation modeling. The PCA of the BRSEQ resulted in a 16-item, 4-factor scale, and the BEQ formed an 18-item, 2-factor scale. Both scales were internally reliable. CFA confirmed these internal structures and reduced the questionnaires to a 14-item self-efficacy scale and a 12-item expectancy scale. Lower self-efficacy and higher expectancy were moderately associated with higher scores on the SDS-B. The scales provide reliable measures for assessing benzodiazepine self-efficacy and expectancies. Future research will examine the utility of the scales in prospective prediction of benzodiazepine cessation.
Resumo:
There is no specific self-efficacy measure that has been developed primarily for problem drinkers seeking a moderation drinking goal. In this article, we report the factor structure of a 20-item Controlled Drinking Self-Efficacy Scale (CDSES; Sitharthan et al., 1996; Sitharthan et al., 1997). The results indicate that the CDSES is highly reliable, and the factor analysis using the full sample identified four factors: negative affect, positive mood/social context, frequency of drinking, and consumption quantity. A similar factor structure was obtained for the subsample of men. In contrast, only three factors emerged in the analysis of data on female participants. Compared to women, men had low self-efficacy to control their drinking in situations relating to positive mood/social context, and subjects with high alcohol dependence had low self-efficacy for situations relating to negative affect, social situations, and drinking less frequently. The CDSES can be a useful measure in treatment programs providing a moderation drinking goal.
Resumo:
Synchronous fluorescence spectroscopy (SFS) was applied for the investigation of interactions of the antibiotic, tetracycline (TC), with DNA in the presence of aluminium ions (Al3+). The study was facilitated by the use of the Methylene Blue (MB) dye probe, and the interpretation of the spectral data with the aid of the chemometrics method, parallel factor analysis (PARAFAC). Three-way synchronous fluorescence analysis extracted the important optimum constant wavelength differences, Δλ, and showed that for the TC–Al3+–DNA, TC–Al3+ and MB dye systems, the associated Δλ values were different (Δλ = 80, 75 and 30 nm, respectively). Subsequent PARAFAC analysis demonstrated the extraction of the equilibrium concentration profiles for the TC–Al3+, TC–Al3+–DNA and MB probe systems. This information is unobtainable by conventional means of data interpretation. The results indicated that the MB dye interacted with the TC–Al3+–DNA surface complex, presumably via a reaction intermediate, TC–Al3+–DNA–MB, leading to the displacement of the TC–Al3+ by the incoming MB dye probe.
Resumo:
This article describes the development and validation of a multi-dimensional scale for measuring managers’ perceptions of the range of factors that routinely guide their decision-making processes. An instrument for identifying managerial ethical profiles (MEP) is developed by measuring the perceived role of different ethical principles in the decision-making of managers. Evidence as to the validity of the multidimensionality of the ethical scale is provided, based on the comparative assessment of different models for managerial ethical decision-making. Confirmatory Factor Analysis (CFA) supported a eight-factor model including two factors for each of the main four schools of moral philosophy. Future research needs and the value of this measure to business ethics are discussed.
Resumo:
Investigated the psychometric properties of the original and alternate sets of the Trail Making Test (TMT) and the Controlled Oral Word Association Test (COWAT; A. L. Benton and D. Hamsher, 1978) in 50 orthopedic and 15 closed head injured (1 yr after trauma) patients (aged 15–59 yrs). Although the alternate forms of both measures proved to be stable and consistent with each other in both groups, only the parallel sets of TMT reliably discriminated the clinical group from controls. Practice effects in the head injured were significant only for Trail B of TMT. Factor analysis of the control group's results identified Verbal Knowledge as a major contributor to performance on COWAT, whereas TMT was more dependent on Rapid Visual Search and Visuomotor Sequencing.
Resumo:
Relationships between self-reported retrospective falls and cognitive measures (executive function, reaction time, processing speed, working memory, visual attention) were examined in a population based sample of older adults (n = 658). Two of the choice reaction time tests involved inhibiting responses to either targets of a specific color or location with hand and foot responses. Potentially confounding demographic variables, medical conditions and postural sway were controlled for in logistic regression models, excluding participants with possible cognitive impairment. A factor analysis of cognitive measures extracted factors measuring reaction time, accuracy and inhibition, and visual search. Single fallers did not differ from non-fallers in terms of health, sway or cognitive function, except that they performed worse on accuracy and inhibition. In contrast, recurrent fallers performed worse than non-fallers on all measures. Results suggest that occasional falls in late life may be associated with subtle age-related changes in the pre-frontal cortex leading to failures of executive control, whereas recurrent falling may result from more advanced brain ageing that is associated with generalized cognitive decline.
Resumo:
Multivariate methods are required to assess the interrelationships among multiple, concurrent symptoms. We examined the conceptual and contextual appropriateness of commonly used multivariate methods for cancer symptom cluster identification. From 178 publications identified in an online database search of Medline, CINAHL, and PsycINFO, limited to articles published in English, 10 years prior to March 2007, 13 cross-sectional studies met the inclusion criteria. Conceptually, common factor analysis (FA) and hierarchical cluster analysis (HCA) are appropriate for symptom cluster identification, not principal component analysis. As a basis for new directions in symptom management, FA methods are more appropriate than HCA. Principal axis factoring or maximum likelihood factoring, the scree plot, oblique rotation, and clinical interpretation are recommended approaches to symptom cluster identification.
Resumo:
Background: There are innumerable diabetes studies that have investigated associations between risk factors, protective factors, and health outcomes; however, these individual predictors are part of a complex network of interacting forces. Moreover, there is little awareness about resilience or its importance in chronic disease in adulthood, especially diabetes. Thus, this is the first study to: (1) extensively investigate the relationships among a host of predictors and multiple adaptive outcomes; and (2) conceptualise a resilience model among people with diabetes. Methods: This cross-sectional study was divided into two research studies. Study One was to translate two diabetes-specific instruments (Problem Areas In Diabetes, PAID; Diabetes Coping Measure, DCM) into a Chinese version and to examine their psychometric properties for use in Study Two in a convenience sample of 205 outpatients with type 2 diabetes. In Study Two, an integrated theoretical model is developed and evaluated using the structural equation modelling (SEM) technique. A self-administered questionnaire was completed by 345 people with type 2 diabetes from the endocrine outpatient departments of three hospitals in Taiwan. Results: Confirmatory factor analyses confirmed a one-factor structure of the PAID-C which was similar to the original version of the PAID. Strong content validity of the PAID-C was demonstrated. The PAID-C was associated with HbA1c and diabetes self-care behaviours, confirming satisfactory criterion validity. There was a moderate relationship between the PAID-C and the Perceived Stress Scale, supporting satisfactory convergent validity. The PAID-C also demonstrated satisfactory stability and high internal consistency. A four-factor structure and strong content validity of the DCM-C was confirmed. Criterion validity demonstrated that the DCM-C was significantly associated with HbA1c and diabetes self-care behaviours. There was a statistical correlation between the DCM-C and the Revised Ways of Coping Checklist, suggesting satisfactory convergent validity. Test-retest reliability demonstrated satisfactory stability of the DCM-C. The total scale of the DCM-C showed adequate internal consistency. Age, duration of diabetes, diabetes symptoms, diabetes distress, physical activity, coping strategies, and social support were the most consistent factors associated with adaptive outcomes in adults with diabetes. Resilience was positively associated with coping strategies, social support, health-related quality of life, and diabetes self-care behaviours. Results of the structural equation modelling revealed protective factors had a significant direct effect on adaptive outcomes; however, the construct of risk factors was not significantly related to adaptive outcomes. Moreover, resilience can moderate the relationships among protective factors and adaptive outcomes, but there were no interaction effects of risk factors and resilience on adaptive outcomes. Conclusion: This study contributes to an understanding of how risk factors and protective factors work together to influence adaptive outcomes in blood sugar control, health-related quality of life, and diabetes self-care behaviours. Additionally, resilience is a positive personality characteristic and may be importantly involved in the adjustment process among people living with type 2 diabetes.
Resumo:
Purpose: To evaluate the psychometric properties of a Chinese version of the Diabetes Coping Measure (DCM-C) scale.----- Methods: A self-administered questionnaire was completed by 205 people with type 2 diabetes from the endocrine outpatient departments of three hospitals in Taiwan. Confirmatory factor analysis, criterion validity, and internal consistency reliability were conducted to evaluate the psychometric properties of the DCM-C.----- Findings: Confirmatory factor analysis confirmed a four-factor structure (χ2 /df ratio=1.351, GFI=.904, CFI=.902, RMSEA=.041). The DCM-C was significantly associated with HbA1c and diabetes self-care behaviors. Internal consistency reliability of the total DCM-C scale was .74. Cronbach’s alpha coefficients for each subscale of the DCM-C ranged from .37 (tackling spirit) to .66 (diabetes integration).----- Conclusions: The DCM-C demonstrated satisfactory reliability and validity to determine the use of diabetes coping strategies. The tackling spirit dimension needs further refinement when applies this scale to Chinese populations with diabetes.----- Clinical Relevance: Healthcare providers who deal with Chinese people with diabetes can use the DCM-C to implement an early determination of diabetes coping strategies.
Resumo:
This paper analyzes the common factor structure of US, German, and Japanese Government bond returns. Unlike previous studies, we formally take into account the presence of country-specific factors when estimating common factors. We show that the classical approach of running a principal component analysis on a multi-country dataset of bond returns captures both local and common influences and therefore tends to pick too many factors. We conclude that US bond returns share only one common factor with German and Japanese bond returns. This single common factor is associated most notably with changes in the level of domestic term structures. We show that accounting for country-specific factors improves the performance of domestic and international hedging strategies.
Resumo:
Emerging market importers are increasingly engaging in relationships with foreign suppliers. Nevertheless, characteristics of the institutional and cultural environments of countries may affect relationship behaviour. Furthermore research on relationship marketing primarily focuses on the marketing activities of exporters from developed countries and much less attention is paid to the import side of the exchange process. Thus, the objective of this study is to empirically examine importer relationship performance in a Latin America context. This article proposes and tests a conceptual model that includes the antecedents and outcomes of trust and commitment with a survey of Chilean importers. The model uses confirmatory factor analysis (CFA) to develop the construct measures and structural equation modelling (SEMS) to test the model. The findings of this study contribute to a better understanding of the driving forces of trust and commitments and their influence on importing firms' performance in an emerging market context.
Resumo:
OBJECTIVES: To develop and validate a wandering typology. ---------- DESIGN: Cross-sectional, correlational descriptive design. ---------- SETTING:: Twenty-two nursing homes and six assisted living facilities. ---------- PARTICIPANTS: One hundred forty-two residents with dementia who spoke English, met Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition, criteria for dementia, scored less than 24 on the Mini-Mental State Examination (MMSE), were ambulatory (with or without assistive device), and maintained a stable regime of psychotropic medications were studied. ---------- MEASUREMENTS: Data on wandering were collected using direct observations, plotted serially according to rate and duration to yield 21 parameters, and reduced through factor analysis to four components: high rate, high duration, low to moderate rate and duration, and time of day. Other measures included the MMSE, Minimum Data Set 2.0 mobility items, Cumulative Illness Rating Scale—Geriatric, and tympanic body temperature readings. ---------- RESULTS: Three groups of wanderers were identified through cluster analysis: classic, moderate, and subclinical. MMSE, mobility, and cardiac and upper and lower gastrointestinal problems differed between groups of wanderers and in comparison with nonwanderers. ---------- CONCLUSION: Results have implications for improving identification of wanderers and treatment of possible contributing factors.
Resumo:
Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.