310 resultados para estimate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The over representation of novice drivers in crashes is alarming. Research indicates that one in five drivers’ crashes within their first year of driving. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the drive. This paper presents a system that evaluates the data stream acquired from multiple in-vehicle sensors (acquired from Driver Vehicle Environment-DVE) using fuzzy rules and classifies the driving manoeuvres (i.e. overtake, lane change and turn) as low risk or high risk. The fuzzy rules use parameters such as following distance, frequency of mirror checks, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvre to assess risk. The fuzzy rules to estimate risk are designed after analysing the selected driving manoeuvres performed by driver trainers. This paper focuses mainly on the difference in gaze pattern for experienced and novice drivers during the selected manoeuvres. Using this system, trainers of novice drivers would be able to empirically evaluate and give feedback to the novice drivers regarding their driving behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis addresses computational challenges arising from Bayesian analysis of complex real-world problems. Many of the models and algorithms designed for such analysis are ‘hybrid’ in nature, in that they are a composition of components for which their individual properties may be easily described but the performance of the model or algorithm as a whole is less well understood. The aim of this research project is to after a better understanding of the performance of hybrid models and algorithms. The goal of this thesis is to analyse the computational aspects of hybrid models and hybrid algorithms in the Bayesian context. The first objective of the research focuses on computational aspects of hybrid models, notably a continuous finite mixture of t-distributions. In the mixture model, an inference of interest is the number of components, as this may relate to both the quality of model fit to data and the computational workload. The analysis of t-mixtures using Markov chain Monte Carlo (MCMC) is described and the model is compared to the Normal case based on the goodness of fit. Through simulation studies, it is demonstrated that the t-mixture model can be more flexible and more parsimonious in terms of number of components, particularly for skewed and heavytailed data. The study also reveals important computational issues associated with the use of t-mixtures, which have not been adequately considered in the literature. The second objective of the research focuses on computational aspects of hybrid algorithms for Bayesian analysis. Two approaches will be considered: a formal comparison of the performance of a range of hybrid algorithms and a theoretical investigation of the performance of one of these algorithms in high dimensions. For the first approach, the delayed rejection algorithm, the pinball sampler, the Metropolis adjusted Langevin algorithm, and the hybrid version of the population Monte Carlo (PMC) algorithm are selected as a set of examples of hybrid algorithms. Statistical literature shows how statistical efficiency is often the only criteria for an efficient algorithm. In this thesis the algorithms are also considered and compared from a more practical perspective. This extends to the study of how individual algorithms contribute to the overall efficiency of hybrid algorithms, and highlights weaknesses that may be introduced by the combination process of these components in a single algorithm. The second approach to considering computational aspects of hybrid algorithms involves an investigation of the performance of the PMC in high dimensions. It is well known that as a model becomes more complex, computation may become increasingly difficult in real time. In particular the importance sampling based algorithms, including the PMC, are known to be unstable in high dimensions. This thesis examines the PMC algorithm in a simplified setting, a single step of the general sampling, and explores a fundamental problem that occurs in applying importance sampling to a high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of the estimate under conditions on the importance function. Additionally, the exponential growth of the asymptotic variance with the dimension is demonstrated and we illustrates that the optimal covariance matrix for the importance function can be estimated in a special case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The previous investigations have shown that the modal strain energy correlation method, MSEC, could successfully identify the damage of truss bridge structures. However, it has to incorporate the sensitivity matrix to estimate damage and is not reliable in certain damage detection cases. This paper presents an improved MSEC method where the prediction of modal strain energy change vector is differently obtained by running the eigensolutions on-line in optimisation iterations. The particular trail damage treatment group maximising the fitness function close to unity is identified as the detected damage location. This improvement is then compared with the original MSEC method along with other typical correlation-based methods on the finite element model of a simple truss bridge. The contributions to damage detection accuracy of each considered mode is also weighed and discussed. The iterative searching process is operated by using genetic algorithm. The results demonstrate that the improved MSEC method suffices the demand in detecting the damage of truss bridge structures, even when noised measurement is considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To describe quality of life (QOL) over a 12-month period among women with breast cancer, consider the association between QOL and overall survival (OS), and explore characteristics associated with QOL declines. Methods A population-based sample of Australian women (n=287) with invasive, unilateral breast cancer (Stage I+), was observed prospectively for a median of 6.6 years. QOL was assessed at six, 12 and 18 months post-diagnosis, using the Functional Assessment of Cancer Therapy, Breast (FACT-B+4) questionnaire. Raw scores for the FACT-B+4 and subscales were computed and individuals were categorized according to whether QOL declined, remained stable or improved between six and 18 months. Kaplan-Meier and Cox proportional hazards survival methods were used to estimate OS and its associations with QOL. Logistic regression models identified factors associated with QOL decline. Results Within FACT-B+4 sub-scales, between 10% and 23% of women showed declines in QOL. Following adjustment for established prognostic factors, emotional wellbeing and FACT-B+4 scores at six months post-diagnosis were associated with OS (p<0.05). Declines in physical (p<0.01) or functional (p=0.02) well-being between six and 18 months post-diagnosis were also associated significantly with OS. Receiving multiple forms of adjuvant treatment, a perception of not handling stress well and reporting one or more other major life events at six months post-diagnosis were factors associated with declines in QOL in multivariable analyses. Conclusions Interventions targeted at preventing QOL declines may ultimately improve quantity as well as quality of life following breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we outline the sensing system used for the visual pose control of our experimental car-like vehicle, the autonomous tractor. The sensing system consists of a magnetic compass, an omnidirectional camera and a low-resolution odometry system. In this work, information from these sensors is fused using complementary filters. Complementary filters provide a means of fusing information from sensors with different characteristics in order to produce a more reliable estimate of the desired variable. Here, the range and bearing of landmarks observed by the vision system are fused with odometry information and a vehicle model, providing a more reliable estimate of these states. We also present a method of combining a compass sensor with odometry and a vehicle model to improve the heading estimate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we outline the sensing system used for the visual pose control of our experimental car-like vehicle, the Autonomous Tractor. The sensing system consists of a magnetic compass, an omnidirectional camera and a low-resolution odometry system. In this work, information from these sensors is fused using complementary filters. Complementary filters provide a means of fusing information from sensors with different characteristics in order to produce a more reliable estimate of the desired variable. Here, the range and bearing of landmarks observed by the vision system are fused with odometry information and a vehicle model, providing a more reliable estimate of these states. We also present a method of combining a compass sensor with odometry and a vehicle model to improve the heading estimate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we describe the Large Margin Vector Quantization algorithm (LMVQ), which uses gradient ascent to maximise the margin of a radial basis function classifier. We present a derivation of the algorithm, which proceeds from an estimate of the class-conditional probability densities. We show that the key behaviour of Kohonen's well-known LVQ2 and LVQ3 algorithms emerge as natural consequences of our formulation. We compare the performance of LMVQ with that of Kohonen's LVQ algorithms on an artificial classification problem and several well known benchmark classification tasks. We find that the classifiers produced by LMVQ attain a level of accuracy that compares well with those obtained via LVQ1, LVQ2 and LVQ3, with reduced storage complexity. We indicate future directions of enquiry based on the large margin approach to Learning Vector Quantization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microphone arrays have been used in various applications to capture conversations, such as in meetings and teleconferences. In many cases, the microphone and likely source locations are known \emph{a priori}, and calculating beamforming filters is therefore straightforward. In ad-hoc situations, however, when the microphones have not been systematically positioned, this information is not available and beamforming must be achieved blindly. In achieving this, a commonly neglected issue is whether it is optimal to use all of the available microphones, or only an advantageous subset of these. This paper commences by reviewing different approaches to blind beamforming, characterising them by the way they estimate the signal propagation vector and the spatial coherence of noise in the absence of prior knowledge of microphone and speaker locations. Following this, a novel clustered approach to blind beamforming is motivated and developed. Without using any prior geometrical information, microphones are first grouped into localised clusters, which are then ranked according to their relative distance from a speaker. Beamforming is then performed using either the closest microphone cluster, or a weighted combination of clusters. The clustered algorithms are compared to the full set of microphones in experiments on a database recorded on different ad-hoc array geometries. These experiments evaluate the methods in terms of signal enhancement as well as performance on a large vocabulary speech recognition task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While close talking microphones give the best signal quality and produce the highest accuracy from current Automatic Speech Recognition (ASR) systems, the speech signal enhanced by microphone array has been shown to be an effective alternative in a noisy environment. The use of microphone arrays in contrast to close talking microphones alleviates the feeling of discomfort and distraction to the user. For this reason, microphone arrays are popular and have been used in a wide range of applications such as teleconferencing, hearing aids, speaker tracking, and as the front-end to speech recognition systems. With advances in sensor and sensor network technology, there is considerable potential for applications that employ ad-hoc networks of microphone-equipped devices collaboratively as a virtual microphone array. By allowing such devices to be distributed throughout the users’ environment, the microphone positions are no longer constrained to traditional fixed geometrical arrangements. This flexibility in the means of data acquisition allows different audio scenes to be captured to give a complete picture of the working environment. In such ad-hoc deployment of microphone sensors, however, the lack of information about the location of devices and active speakers poses technical challenges for array signal processing algorithms which must be addressed to allow deployment in real-world applications. While not an ad-hoc sensor network, conditions approaching this have in effect been imposed in recent National Institute of Standards and Technology (NIST) ASR evaluations on distant microphone recordings of meetings. The NIST evaluation data comes from multiple sites, each with different and often loosely specified distant microphone configurations. This research investigates how microphone array methods can be applied for ad-hoc microphone arrays. A particular focus is on devising methods that are robust to unknown microphone placements in order to improve the overall speech quality and recognition performance provided by the beamforming algorithms. In ad-hoc situations, microphone positions and likely source locations are not known and beamforming must be achieved blindly. There are two general approaches that can be employed to blindly estimate the steering vector for beamforming. The first is direct estimation without regard to the microphone and source locations. An alternative approach is instead to first determine the unknown microphone positions through array calibration methods and then to use the traditional geometrical formulation for the steering vector. Following these two major approaches investigated in this thesis, a novel clustered approach which includes clustering the microphones and selecting the clusters based on their proximity to the speaker is proposed. Novel experiments are conducted to demonstrate that the proposed method to automatically select clusters of microphones (ie, a subarray), closely located both to each other and to the desired speech source, may in fact provide a more robust speech enhancement and recognition than the full array could.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In public venues, crowd size is a key indicator of crowd safety and stability. In this paper we propose a crowd counting algorithm that uses tracking and local features to count the number of people in each group as represented by a foreground blob segment, so that the total crowd estimate is the sum of the group sizes. Tracking is employed to improve the robustness of the estimate, by analysing the history of each group, including splitting and merging events. A simplified ground truth annotation strategy results in an approach with minimal setup requirements that is highly accurate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Port land uses are subjected to unique anthropogenic activities compared to typical urban land uses. This uniqueness results in distinctive stormwater quality characteristics. Such distinction in stormwater quality has made conventional approaches used for pollutant load estimations inaccurate. This is also the case for the Port of Brisbane (PoB). The study discussed in the paper was conducted to estimate the pollutant contributions from Port specific land uses at PoB. For estimation, software modules embedded in Mike URBAN were used. An innovative approach was adopted in modelling where the conventional model calibration step was not needed to be performed to generate suitable site specific parameters. Instead, equations and site specific parameters that replicate pollutant build-up and wash-off were generated from an extensive field investigation. Models were simulated incorporating site specific parameters from six different Port specific land uses and rainfall events from three representative years. Outcomes of the modelling exercise were used to identify the distinct pollutant contributions from different Port land uses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate estimation of input parameters is essential to ensure the accuracy and reliability of hydrologic and water quality modelling. Calibration is an approach to obtain accurate input parameters for comparing observed and simulated results. However, the calibration approach is limited as it is only applicable to catchments where monitoring data is available. Therefore, methodology to estimate appropriate model input parameters is critical, particularly for catchments where monitoring data is not available. In the research study discussed in the paper, pollutant build-up parameters derived from catchment field investigations and model calibration using MIKE URBAN are compared for three catchments in Southeast Queensland, Australia. Additionally, the sensitivity of MIKE URBAN input parameters was analysed. It was found that Reduction Factor is the most sensitive parameter for peak flow and total runoff volume estimation whilst Build-up rate is the most sensitive parameter for TSS load estimation. Consequently, these input parameters should be determined accurately in hydrologic and water quality simulations using MIKE URBAN. Furthermore, an empirical equation for Southeast Queensland, Australia for the conversion of build-up parameters derived from catchment field investigations as MIKE URBAN input build-up parameters was derived. This will provide guidance for allowing for regional variations in the estimation of input parameters for catchment modelling using MIKE URBAN where monitoring data is not available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Home Automation (HA) has emerged as a prominent ¯eld for researchers and in- vestors confronting the challenge of penetrating the average home user market with products and services emerging from technology based vision. In spite of many technology contri- butions, there is a latent demand for a®ordable and pragmatic assistive technologies for pro-active handling of complex lifestyle related problems faced by home users. This study has pioneered to develop an Initial Technology Roadmap for HA (ITRHA) that formulates a need based vision of 10-15 years, identifying market, product and technology investment opportunities, focusing on those aspects of HA contributing to e±cient management of home and personal life. The concept of Family Life Cycle is developed to understand the temporal needs of family. In order to formally describe a coherent set of family processes, their relationships, and interaction with external elements, a reference model named Fam- ily System is established that identi¯es External Entities, 7 major Family Processes, and 7 subsystems-Finance, Meals, Health, Education, Career, Housing, and Socialisation. Anal- ysis of these subsystems reveals Soft, Hard and Hybrid processes. Rectifying the lack of formal methods for eliciting future user requirements and reassessing evolving market needs, this study has developed a novel method called Requirement Elicitation of Future Users by Systems Scenario (REFUSS), integrating process modelling, and scenario technique within the framework of roadmapping. The REFUSS is used to systematically derive process au- tomation needs relating the process knowledge to future user characteristics identi¯ed from scenarios created to visualise di®erent futures with richly detailed information on lifestyle trends thus enabling learning about the future requirements. Revealing an addressable market size estimate of billions of dollars per annum this research has developed innovative ideas on software based products including Document Management Systems facilitating automated collection, easy retrieval of all documents, In- formation Management System automating information services and Ubiquitous Intelligent System empowering the highly mobile home users with ambient intelligence. Other product ideas include robotic devices of versatile Kitchen Hand and Cleaner Arm that can be time saving. Materialisation of these products require technology investment initiating further research in areas of data extraction, and information integration as well as manipulation and perception, sensor actuator system, tactile sensing, odour detection, and robotic controller. This study recommends new policies on electronic data delivery from service providers as well as new standards on XML based document structure and format.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generating accurate population-specific public health messages regarding sun protection requires knowledge about seasonal variation in sun exposure in different environments. To address this issue for a subtropical area of Australia, we used polysulphone badges to measure UVR for the township of Nambour (26° latitude) and personal UVR exposure among Nambour residents who were taking part in a skin cancer prevention trial. Badges were worn by participants for two winter and two summer days. The ambient UVR was approximately three times as high in summer as in winter. However, participants received more than twice the proportion of available UVR in winter as in summer (6.5%vs 2.7%, P < 0.05), resulting in an average ratio of summer to winter personal UVR exposure of 1.35. The average absolute difference in daily dose between summer and winter was only one-seventh of a minimal erythemal dose. Extrapolating from our data, we estimate that ca. 42% of the total exposure received in the 6 months of winter (June–August) and summer (December–February) is received during the three winter months. Our data show that in Queensland a substantial proportion of people’s annual UVR dose is obtained in winter, underscoring the need for dissemination of sun protection messages throughout the year in subtropical and tropical climates.