332 resultados para decomposition techniques
Resumo:
Soil C decomposition is sensitive to changes in temperature, and even small increases in temperature may prompt large releases of C from soils. But much of what we know about soil C responses to global change is based on short-term incubation data and model output that implicitly assumes soil C pools are composed of organic matter fractions with uniform temperature sensitivities. In contrast, kinetic theory based on chemical reactions suggests that older, more-resistant C fractions may be more temperature sensitive. Recent research on the subject is inconclusive, indicating that the temperature sensitivity of labile soil organic matter (OM) decomposition could either be greater than, less than, or equivalent to that of resistant soil OM. We incubated soils at constant temperature to deplete them of labile soil OM and then successively assessed the CO2-C efflux in response to warming. We found that the decomposition response to experimental warming early during soil incubation (when more labile C remained) was less than that later when labile C was depleted. These results suggest that the temperature sensitivity of resistant soil OM pools is greater than that for labile soil OM and that global change-driven soil C losses may be greater than previously estimated.
Resumo:
The relationship between organic matter (OM) lability and temperature sensitivity is disputed, with recent observations suggesting that responses of relatively more resistant OM to increased temperature could be greater than, equivalent to, or less than responses of relatively more labile OM. This lack of clear understanding limits the ability to forecast carbon (C) cycle responses to temperature changes. Here, we derive a novel approach (denoted Q(10-q)) that accounts for changes in OM quality during decomposition and use it to analyze data from three independent sources. Results from new laboratory soil incubations (labile Q(10-q)=2.1 +/- 0.2; more resistant Q(10-q)=3.8 +/- 0.3) and reanalysis of data from other soil incubations reported in the literature (labile Q(10-q)=2.3; more resistant Q(10-q)=3.3) demonstrate that temperature sensitivity of soil OM decomposition increases with decreasing soil OM lability. Analysis of data from a cross-site, field litter bag decomposition study (labile Q(10-q)=3.3 +/- 0.2; resistant Q(10-q)=4.9 +/- 0.2) shows that litter OM follows the same pattern, with greater temperature sensitivity for more resistant litter OM. Furthermore, the initial response of cultivated soils, presumably containing less labile soil OM (Q(10-q)=2.4 +/- 0.3) was greater than that for undisturbed grassland soils (Q(10-q)=1.7 +/- 0.1). Soil C losses estimated using this approach will differ from previous estimates as a function of the magnitude of the temperature increase and the proportion of whole soil OM comprised of compounds sensitive to temperature over that temperature range. It is likely that increased temperature has already prompted release of significant amounts of C to the atmosphere as CO2. Our results indicate that future losses of litter and soil C may be even greater than previously supposed.
Resumo:
An algorithm based on the concept of combining Kalman filter and Least Error Square (LES) techniques is proposed in this paper. The algorithm is intended to estimate signal attributes like amplitude, frequency and phase angle in the online mode. This technique can be used in protection relays, digital AVRs, DGs, DSTATCOMs, FACTS and other power electronics applications. The Kalman filter is modified to operate on a fictitious input signal and provides precise estimation results insensitive to noise and other disturbances. At the same time, the LES system has been arranged to operate in critical transient cases to compensate the delay and inaccuracy identified because of the response of the standard Kalman filter. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations and a laboratory test are presented to highlight the usefulness of the proposed method. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.
Resumo:
This paper discusses the role of advance techniques for monitoring urban growth and change for sustainable development of urban environment. It also presents results of a case study involving satellite data for land use/land cover classification of Lucknow city using IRS-1C multi-spectral features. Two classification algorithms have been used in the study. Experiments were conducted to see the level of improvement in digital classification of urban environment using Artificial Neural Network (ANN) technique.
Resumo:
PURPOSE. To measure tear film surface quality in healthy and dry eye subjects using three noninvasive techniques of tear film quality assessment and to establish the ability of these noninvasive techniques to predict dry eye. METHODS. Thirty four subjects participated in the study, and were classified as dry eye or normal, based on standard clinical assessments. Three non-invasive techniques were applied for measurement of tear film surface quality: dynamic-area high-speed videokeratoscopy (HSV), wavefront sensing (DWS) and lateral shearing interferometry (LSI). The measurements were performed in both natural blinking conditions (NBC) and in suppressed blinking conditions (SBC). RESULTS. In order to investigate the capability of each method to discriminate dry eye subjects from normal subjects, the receiver operating curve (ROC) was calculated and then the area under the curve (AUC) was extracted. The best result was obtained for the LSI technique (AUC=0.80 in SBC and AUC=0.73 in NBC), which was followed by HSV (AUC=0.72 in SBC and AUC=0.71 in NBC). The best result for DWS was AUC=0.64 obtained for changes in vertical coma in suppressed blinking conditions, while for normal blinking conditions the results were poorer. CONCLUSIONS. Non-invasive techniques of tear film surface assessment can be used for predicting dry eye and this can be achieved in natural blinking as well as suppressed blinking conditions. In this study, LSI showed the best detection performance, closely followed by the dynamic-area HSV. The wavefront sensing technique was less powerful, particularly in natural blinking conditions.
Resumo:
Breast conservation therapy (BCT) is the procedure of choice for the management of the early stage breast cancer. However, its utilization has not been maximized because of logistics issues associated with the protracted treatment involved with the radiation treatment. Accelerated Partial Breast Irradiation (APBI) is an approach that treats only the lumpectomy bed plus a 1-2 cm margin, rather than the whole breast. Hence because of the small volume of irradiation a higher dose can be delivered in a shorter period of time. There has been growing interest for APBI and various approaches have been developed under phase I-III clinical studies; these include multicatheter interstitial brachytherapy, balloon catheter brachytherapy, conformal external beam radiation therapy and intra-operative radiation therapy (IORT). Balloon-based brachytherapy approaches include Mammosite, Axxent electronic brachytherapy and Contura, Hybrid brachytherapy devices include SAVI and ClearPath. This paper reviews the different techniques, identifying the weaknesses and strength of each approach and proposes a direction for future research and development. It is evident that APBI will play a role in the management of a selected group of early breast cancer. However, the relative role of the different techniques is yet to be clearly identified.
Resumo:
Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically threedimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of three-dimensional scaffolds with complex geometries and very fine structures. Adding micro- and nanometer details into the scaffolds improves the mechanical properties of the scaffold and ensures better cell adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized according to the data acquired from the medical scans to match the each patient’s individual needs. In addition RP enables the control of the scaffold porosity making it possible to fabricate applications with desired structural integrity. Unfortunately, every RP process has its own unique disadvantages in building tissue engineering scaffolds. Hence, the future research should be focused into the development of RP machines designed specifically for fabrication of tissue engineering scaffolds, although RP methods already can serve as a link between tissue and engineering.
Resumo:
This paper presents a comprehensive discussion of vegetation management approaches in power line corridors based on aerial remote sensing techniques. We address three issues 1) strategies for risk management in power line corridors, 2) selection of suitable platforms and sensor suite for data collection and 3) the progress in automated data processing techniques for vegetation management. We present initial results from a series of experiments and, challenges and lessons learnt from our project.
Resumo:
Stereo vision is a method of depth perception, in which depth information is inferred from two (or more) images of a scene, taken from different perspectives. Applications of stereo vision include aerial photogrammetry, autonomous vehicle guidance, robotics, industrial automation and stereomicroscopy. A key issue in stereo vision is that of image matching, or identifying corresponding points in a stereo pair. The difference in the positions of corresponding points in image coordinates is termed the parallax or disparity. When the orientation of the two cameras is known, corresponding points may be projected back to find the location of the original object point in world coordinates. Matching techniques are typically categorised according to the nature of the matching primitives they use and the matching strategy they employ. This report provides a detailed taxonomy of image matching techniques, including area based, transform based, feature based, phase based, hybrid, relaxation based, dynamic programming and object space methods. A number of area based matching metrics as well as the rank and census transforms were implemented, in order to investigate their suitability for a real-time stereo sensor for mining automation applications. The requirements of this sensor were speed, robustness, and the ability to produce a dense depth map. The Sum of Absolute Differences matching metric was the least computationally expensive; however, this metric was the most sensitive to radiometric distortion. Metrics such as the Zero Mean Sum of Absolute Differences and Normalised Cross Correlation were the most robust to this type of distortion but introduced additional computational complexity. The rank and census transforms were found to be robust to radiometric distortion, in addition to having low computational complexity. They are therefore prime candidates for a matching algorithm for a stereo sensor for real-time mining applications. A number of issues came to light during this investigation which may merit further work. These include devising a means to evaluate and compare disparity results of different matching algorithms, and finding a method of assigning a level of confidence to a match. Another issue of interest is the possibility of statistically combining the results of different matching algorithms, in order to improve robustness.
Resumo:
Vector field visualisation is one of the classic sub-fields of scientific data visualisation. The need for effective visualisation of flow data arises in many scientific domains ranging from medical sciences to aerodynamics. Though there has been much research on the topic, the question of how to communicate flow information effectively in real, practical situations is still largely an unsolved problem. This is particularly true for complex 3D flows. In this presentation we give a brief introduction and background to vector field visualisation and comment on the effectiveness of the most common solutions. We will then give some examples of current development on texture-based techniques, and given practical examples of their use in CFD research and hydrodynamic applications.
Resumo:
The computation of compact and meaningful representations of high dimensional sensor data has recently been addressed through the development of Nonlinear Dimensional Reduction (NLDR) algorithms. The numerical implementation of spectral NLDR techniques typically leads to a symmetric eigenvalue problem that is solved by traditional batch eigensolution algorithms. The application of such algorithms in real-time systems necessitates the development of sequential algorithms that perform feature extraction online. This paper presents an efficient online NLDR scheme, Sequential-Isomap, based on incremental singular value decomposition (SVD) and the Isomap method. Example simulations demonstrate the validity and significant potential of this technique in real-time applications such as autonomous systems.
Resumo:
Road surface macro-texture is an indicator used to determine the skid resistance levels in pavements. Existing methods of quantifying macro-texture include the sand patch test and the laser profilometer. These methods utilise the 3D information of the pavement surface to extract the average texture depth. Recently, interest in image processing techniques as a quantifier of macro-texture has arisen, mainly using the Fast Fourier Transform (FFT). This paper reviews the FFT method, and then proposes two new methods, one using the autocorrelation function and the other using wavelets. The methods are tested on pictures obtained from a pavement surface extending more than 2km's. About 200 images were acquired from the surface at approx. 10m intervals from a height 80cm above ground. The results obtained from image analysis methods using the FFT, the autocorrelation function and wavelets are compared with sensor measured texture depth (SMTD) data obtained from the same paved surface. The results indicate that coefficients of determination (R2) exceeding 0.8 are obtained when up to 10% of outliers are removed.
Resumo:
As organizations reach to higher levels of business process management maturity, they often find themselves maintaining repositories of hundreds or even thousands of process models, representing valuable knowledge about their operations. Over time, process model repositories tend to accumulate duplicate fragments (also called clones) as new process models are created or extended by copying and merging fragments from other models. This calls for methods to detect clones in process models, so that these clones can be refactored as separate subprocesses in order to improve maintainability. This paper presents an indexing structure to support the fast detection of clones in large process model repositories. The proposed index is based on a novel combination of a method for process model decomposition (specifically the Refined Process Structure Tree), with established graph canonization and string matching techniques. Experiments show that the algorithm scales to repositories with hundreds of models. The experimental results also show that a significant number of non-trivial clones can be found in process model repositories taken from industrial practice.
Resumo:
In order to achieve meaningful reductions in individual ecological footprints, individuals must dramatically alter their day to day behaviours. Effective interventions will need to be evidence based and there is a necessity for the rapid transfer or communication of information from the point of research, into policy and practice. A number of health disciplines, including psychology and public health, share a common mission to promote health and well-being and it is becoming clear that the most practical pathway to achieving this mission is through interdisciplinary collaboration. This paper argues that an interdisciplinary collaborative approach will facilitate research that results in the rapid transfer of findings into policy and practice. The application of this approach is described in relation to the Green Living project which explored the psycho-social predictors of environmentally friendly behaviour. Following a qualitative pilot study, and in consultation with an expert panel comprising academics, industry professionals and government representatives, a self-administered mail survey was distributed to a random sample of 3000 residents of Brisbane and Moreton Bay (Queensland, Australia). The Green Living survey explored specific beliefs which included attitudes, norms, perceived control, intention and behaviour, as well as a number of other constructs such as environmental concern and altruism. This research has two beneficial outcomes. First, it will inform a practical model for predicting sustainable living behaviours and a number of local councils have already expressed an interest in making use of the results as part of their ongoing community engagement programs. Second, it provides an example of how a collaborative interdisciplinary project can provide a more comprehensive approach to research than can be accomplished by a single disciplinary project.