144 resultados para channel activating proteases
Resumo:
Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings are exposed to elevated temperatures. Hence after such events there is a need to determine the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel members. This research is aimed at investigating the residual distortional buckling capacities of fire exposed cold-formed steel lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperature before they were tested to failure. Suitable finite element models of tested columns were also developed and validated using test results. The residual compression capacities of tested columns were predicted using the ambient temperature cold-formed steel design rules (AS/NZS 4600, AISI S100 and Direct Strength Method). Post-fire mechanical properties obtained from a previous study were used in this study. Comparison of results showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of buildings after fire events. This paper presents the details of these experimental and numerical studies and the results.
Resumo:
Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is one of the failure modes that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a new test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 38 tests were conducted in this research to investigate the web crippling behaviour and strength of channel beams under ETF and ITF cases. Unlipped channel sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the current design rules in AS/NZS 4600 and the AISI S100 Specification for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel beam (LSB) subject to web crippling under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. The LSB sections with two rectangular hollow flanges are made using a simultaneous cold-forming and electric resistance welding process. Due to the geometry of the LSB, and its unique residual stress characteristics and initial geometric imperfections, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending, predominant shear and combined actions. To date, however, no investigation has been conducted on the web crippling behaviour and strength of LSB sections. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of LSBs. Twenty-eight web crippling tests were conducted under ETF and ITF load cases, and the ultimate web crippling capacities were compared with the predictions from the design equations in AS/NZS 4600 and AISI S100. This comparison showed that AS/NZS 4600 and AISI S100 web crippling design equations are unconservative for LSB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs based on experimental results. Suitable design rules were also developed under the direct strength method (DSM) format.
Resumo:
Cold-formed high strength steel members are increasingly used as primary load bearing components in low rise buildings. Lipped channel beam (LCB) is one of the most commonly used flexural members in these applications. In this research an experimental study was undertaken to investigate the shear behaviour and strengths of LCB sections. Simply supported test specimens of back to back LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. The ultimate shear capacity results obtained from the tests were compared with the predictions from the current design rules in Australian/NewZealand and American cold-formed steel design standards. This comparison showed that these shear design rules are very conservative as they did not include the post-buckling strength observed in the shear tests and the higher shear buckling coefficient due to the additional fixity along the web-flange juncture. Improved shear design equations are proposed in this paper by including the above beneficial effects. Suitable lower bound design rules were also developed under the direct strength method format. This paper presents the details of this experimental study and the results including the improved design rules for the shear capacity of LCBs. It also includes the details of tests of LCBs subject to combined shear and flange distortion, and combined bending and shear actions, and proposes suitable design rules to predict the capacities in these cases.
Resumo:
Cold-formed steel lipped channel beams (LCB) are used extensively in residential, industrial and commercial buildings as load bearing structural elements. Their shear capacities are considerably reduced when web openings are included for the purpose of locating building services. Past research has shown that the shear capacities of LCBs were reduced by up to 70% due to the inclusion of these web openings. Hence there is a need to improve the shear capacities of LCBs with web openings. A cost effective way of eliminating the detrimental effects of large web openings is to attach suitable stiffeners around the web openings and restore the original shear strength and stiffness of LCBs. Hence detailed experimental studies were undertaken to investigate the behaviour and strength of LCBs with stiffened web openings subject to shear, and combined bending and shear actions. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LCBs using different screw-fastening arrangements. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Numerical studies were also undertaken to investigate the strength of LCBs with stiffened web openings. Finite element models of LCBs with stiffened web openings under shear, combined bending and shear actions were developed to simulate the behaviour of tested LCBs. The developed models were then validated by comparing their results with experimental results and used in further studies. Both experimental and finite element analysis results showed that the stiffening arrangements recommended by past research and available design guidelines are not adequate to restore the original shear strengths of LCBs. Therefore new stiffener arrangements were proposed based on screw fastened plate stiffeners. This paper presents the details of this research study and the results.
Resumo:
Aim: To examine evidence-based strategies that motivate appropriate action and increase informed decision-making during the response and recovery phases of disasters.
Resumo:
Why are consumers different: Heterogeneity in the way consumers categorise products and services – Snack Food Influenced by the individual needs, personal traits, values and goals – Blood Donation Consumers base their choices on information from external sources and prior experiences stored in memory. Intrinsic – prior experience Extrinsic – advertising, blogs, etc
Resumo:
This paper presents a low-bandwidth multi-robot communication system designed to serve as a backup communication channel in the event a robot suffers a network device fault. While much research has been performed in the area of distributing network communication across multiple robots within a system, individual robots are still susceptible to hardware failure. In the past, such robots would simply be removed from service, and their tasks re-allocated to other members. However, there are times when a faulty robot might be crucial to a mission, or be able to contribute in a less communication intensive area. By allowing robots to encode and decode messages into unique sequences of DTMF symbols, called words, our system is able to facilitate continued low-bandwidth communication between robots without access to network communication. Our results have shown that the system is capable of permitting robots to negotiate task initiation and termination, and is flexible enough to permit a pair of robots to perform a simple turn taking task.
Resumo:
Compression is desirable for network applications as it saves bandwidth; however, when data is compressed before being encrypted, the amount of compression leaks information about the amount of redundancy in the plaintext. This side channel has led to successful CRIME and BREACH attacks on web traffic protected by the Transport Layer Security (TLS) protocol. The general guidance in light of these attacks has been to disable compression, preserving confidentiality but sacrificing bandwidth. In this paper, we examine two techniques - heuristic separation of secrets and fixed-dictionary compression|for enabling compression while protecting high-value secrets, such as cookies, from attack. We model the security offered by these techniques and report on the amount of compressibility that they can achieve.
Resumo:
This thesis presents a novel idea for an adaptive prioritized cross-layer design (APCLD) control algorithm to achieve comprehensive channel congestion control for vehicular safety communication based on DSRC technology. An appropriate evaluation metric and two control parameters have been established. Simulation studies have evaluated the DSRC network performance in different traffic scenario and under different channel conditions. The APCLD algorithm is derived from the results of the simulation analysis.
Resumo:
This study investigated interactions of protein-cleaving enzymes (or proteases) that promote prostate cancer progression. It provides the first evidence of a novel regulatory network of protease activity at the surface of cells. The proteases kallikrein-related peptidases 4 and 14, and matrix metalloproteinases 3 and 9 are cleaved at the cell surface by the cell surface proteases hepsin and TMPRSS2. These cleavage events potentially regulate activation of downstream targets of kallikrein 4 and 14 such as cell surface signalling via the protease-activated receptors (PARs) and cell growth-promoting factors such as hepatocyte-growth factor.
Resumo:
The forthcoming NIST’s Advanced Hash Standard (AHS) competition to select SHA-3 hash function requires that each candidate hash function submission must have at least one construction to support FIPS 198 HMAC application. As part of its evaluation, NIST is aiming to select either a candidate hash function which is more resistant to known side channel attacks (SCA) when plugged into HMAC, or that has an alternative MAC mode which is more resistant to known SCA than the other submitted alternatives. In response to this, we perform differential power analysis (DPA) on the possible smart card implementations of some of the recently proposed MAC alternatives to NMAC (a fully analyzed variant of HMAC) and HMAC algorithms and NMAC/HMAC versions of some recently proposed hash and compression function modes. We show that the recently proposed BNMAC and KMDP MAC schemes are even weaker than NMAC/HMAC against the DPA attacks, whereas multi-lane NMAC, EMD MAC and the keyed wide-pipe hash have similar security to NMAC against the DPA attacks. Our DPA attacks do not work on the NMAC setting of MDC-2, Grindahl and MAME compression functions.
Resumo:
It is not uncommon to hear a person of interest described by their height, build, and clothing (i.e. type and colour). These semantic descriptions are commonly used by people to describe others, as they are quick to relate and easy to understand. However such queries are not easily utilised within intelligent surveillance systems as they are difficult to transform into a representation that can be searched for automatically in large camera networks. In this paper we propose a novel approach that transforms such a semantic query into an avatar that is searchable within a video stream, and demonstrate state-of-the-art performance for locating a subject in video based on a description.
Resumo:
Traditionally, the art of teaching dance has largely been a skill transferred from teacher to student. This master-apprentice paradigm encourages the passing on of technical and artistic traditions associated with the various genres of dance. Whilst this approach supports the passing of the flame of the art form from generation to generation, it has, in part, limited the teaching pedagogy that informs dance as an art form. The future of dance teaching is reliant on teachers’ engagement with the further development of inquiry learning and reflective practice skills within the dance studio. This paper charts one component of a reflective pedagogy, Head, Heart, Hands (Pstalozzi as cited in Rud 2006), developed as a result of an action research project, within a suite of three units across a three-year undergraduate teacher-training course for school, community and studio dance teachers.