275 resultados para bayesian hierarchical models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes the use of Bayesian approaches with the cross likelihood ratio (CLR) as a criterion for speaker clustering within a speaker diarization system, using eigenvoice modeling techniques. The CLR has previously been shown to be an effective decision criterion for speaker clustering using Gaussian mixture models. Recently, eigenvoice modeling has become an increasingly popular technique, due to its ability to adequately represent a speaker based on sparse training data, as well as to provide an improved capture of differences in speaker characteristics. The integration of eigenvoice modeling into the CLR framework to capitalize on the advantage of both techniques has also been shown to be beneficial for the speaker clustering task. Building on that success, this paper proposes the use of Bayesian methods to compute the conditional probabilities in computing the CLR, thus effectively combining the eigenvoice-CLR framework with the advantages of a Bayesian approach to the diarization problem. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, resulting in a 33.5% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. For interactive systems, recognition, reproduction, and generalization of observed motion data are crucial for successful interaction. In this paper, we present a novel method for analysis of motion data that we refer to as K-OMM-trees. K-OMM-trees combine Ordered Means Models (OMMs) a model-based machine learning approach for time series with an hierarchical analysis technique for very large data sets, the K-tree algorithm. The proposed K-OMM-trees enable unsupervised prototype extraction of motion time series data with hierarchical data representation. After introducing the algorithmic details, we apply the proposed method to a gesture data set that includes substantial inter-class variations. Results from our studies show that K-OMM-trees are able to substantially increase the recognition performance and to learn an inherent data hierarchy with meaningful gesture abstractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximate Bayesian computation has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the approximate Bayesian computation parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypassing model simulations may lead to significant time savings in complex models, for instance those found in population genetics. The Bayesian computation with empirical likelihood algorithm we develop in this paper also provides an evaluation of its own performance through an associated effective sample size. The method is illustrated using several examples, including estimation of standard distributions, time series, and population genetics models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information that is elicited from experts can be treated as `data', so can be analysed using a Bayesian statistical model, to formulate a prior model. Typically methods for encoding a single expert's knowledge have been parametric, constrained by the extent of an expert's knowledge and energy regarding a target parameter. Interestingly these methods have often been deterministic, in that all elicited information is treated at `face value', without error. Here we sought a parametric and statistical approach for encoding assessments from multiple experts. Our recent work proposed and demonstrated the use of a flexible hierarchical model for this purpose. In contrast to previous mathematical approaches like linear or geometric pooling, our new approach accounts for several sources of variation: elicitation error, encoding error and expert diversity. Of interest are the practical, mathematical and philosophical interpretations of this form of hierarchical pooling (which is both statistical and parametric), and how it fits within the subjective Bayesian paradigm. Case studies from a bioassay and project management (on PhDs) are used to illustrate the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis developed and applied Bayesian models for the analysis of survival data. The gene expression was considered as explanatory variables within the Bayesian survival model which can be considered the new contribution in the analysis of such data. The censoring factor that is inherent of survival data has also been addressed in terms of its impact on the fitting of a finite mixture of Weibull distribution with and without covariates. To investigate this, simulation study were carried out under several censoring percentages. Censoring percentage as high as 80% is acceptable here as the work involved high dimensional data. Lastly the Bayesian model averaging approach was developed to incorporate model uncertainty in the prediction of survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and Exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an $R^2$ goodness of fit of 0.9994 and 0.9982 respectively over a 10 hour test period. The utility of the framework is demonstrated on a number of usage scenarios including real time monitoring and `what-if' analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial point-based dataset (such as occurrence of a disease), we study the geographical variation of residual disease risk using regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a Gaussian field with Matern correlation function. We investigate how changes in grid cell size affect model outcomes under different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside data) is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be applied for different patterns of point data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring stream networks through time provides important ecological information. The sampling design problem is to choose locations where measurements are taken so as to maximise information gathered about physicochemical and biological variables on the stream network. This paper uses a pseudo-Bayesian approach, averaging a utility function over a prior distribution, in finding a design which maximizes the average utility. We use models for correlations of observations on the stream network that are based on stream network distances and described by moving average error models. Utility functions used reflect the needs of the experimenter, such as prediction of location values or estimation of parameters. We propose an algorithmic approach to design with the mean utility of a design estimated using Monte Carlo techniques and an exchange algorithm to search for optimal sampling designs. In particular we focus on the problem of finding an optimal design from a set of fixed designs and finding an optimal subset of a given set of sampling locations. As there are many different variables to measure, such as chemical, physical and biological measurements at each location, designs are derived from models based on different types of response variables: continuous, counts and proportions. We apply the methodology to a synthetic example and the Lake Eacham stream network on the Atherton Tablelands in Queensland, Australia. We show that the optimal designs depend very much on the choice of utility function, varying from space filling to clustered designs and mixtures of these, but given the utility function, designs are relatively robust to the type of response variable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the relationship between macroscopic traffic parameters, such as flow, speed and travel time, is essential to the understanding of the behaviour of freeway and arterial roads. However, the temporal dynamics of these parameters are difficult to model, especially for arterial roads, where the process of traffic change is driven by a variety of variables. The introduction of the Bluetooth technology into the transportation area has proven exceptionally useful for monitoring vehicular traffic, as it allows reliable estimation of travel times and traffic demands. In this work, we propose an approach based on Bayesian networks for analyzing and predicting the complex dynamics of flow or volume, based on travel time observations from Bluetooth sensors. The spatio-temporal relationship between volume and travel time is captured through a first-order transition model, and a univariate Gaussian sensor model. The two models are trained and tested on travel time and volume data, from an arterial link, collected over a period of six days. To reduce the computational costs of the inference tasks, volume is converted into a discrete variable. The discretization process is carried out through a Self-Organizing Map. Preliminary results show that a simple Bayesian network can effectively estimate and predict the complex temporal dynamics of arterial volumes from the travel time data. Not only is the model well suited to produce posterior distributions over single past, current and future states; but it also allows computing the estimations of joint distributions, over sequences of states. Furthermore, the Bayesian network can achieve excellent prediction, even when the stream of travel time observation is partially incomplete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole image descriptors have recently been shown to be remarkably robust to perceptual change especially compared to local features. However, whole-image-based localization systems typically rely on heuristic methods for determining appropriate matching thresholds in a particular environment. These environment-specific tuning requirements and the lack of a meaningful interpretation of these arbitrary thresholds limits the general applicability of these systems. In this paper we present a Bayesian model of probability for whole-image descriptors that can be seamlessly integrated into localization systems designed for probabilistic visual input. We demonstrate this method using CAT-Graph, an appearance-based visual localization system originally designed for a FAB-MAP-style probabilistic input. We show that using whole-image descriptors as visual input extends CAT-Graph’s functionality to environments that experience a greater amount of perceptual change. We also present a method of estimating whole-image probability models in an online manner, removing the need for a prior training phase. We show that this online, automated training method can perform comparably to pre-trained, manually tuned local descriptor methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to knowledge gaps in relation to urban stormwater quality processes, an in-depth understanding of model uncertainty can enhance decision making. Uncertainty in stormwater quality models can originate from a range of sources such as the complexity of urban rainfall-runoff-stormwater pollutant processes and the paucity of observed data. Unfortunately, studies relating to epistemic uncertainty, which arises from the simplification of reality are limited and often deemed mostly unquantifiable. This paper presents a statistical modelling framework for ascertaining epistemic uncertainty associated with pollutant wash-off under a regression modelling paradigm using Ordinary Least Squares Regression (OLSR) and Weighted Least Squares Regression (WLSR) methods with a Bayesian/Gibbs sampling statistical approach. The study results confirmed that WLSR assuming probability distributed data provides more realistic uncertainty estimates of the observed and predicted wash-off values compared to OLSR modelling. It was also noted that the Bayesian/Gibbs sampling approach is superior compared to the most commonly adopted classical statistical and deterministic approaches commonly used in water quality modelling. The study outcomes confirmed that the predication error associated with wash-off replication is relatively higher due to limited data availability. The uncertainty analysis also highlighted the variability of the wash-off modelling coefficient k as a function of complex physical processes, which is primarily influenced by surface characteristics and rainfall intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms using indirect infer- ence. We embed this approach within a sequential Monte Carlo algorithm that is completely adaptive. This methodological development was motivated by an application involving data on macroparasite population evolution modelled with a trivariate Markov process. The main objective of the analysis is to compare inferences on the Markov process when considering two di®erent indirect mod- els. The two indirect models are based on a Beta-Binomial model and a three component mixture of Binomials, with the former providing a better ¯t to the observed data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a unified sequential Monte Carlo (SMC) framework for performing sequential experimental design for discriminating between a set of models. The model discrimination utility that we advocate is fully Bayesian and based upon the mutual information. SMC provides a convenient way to estimate the mutual information. Our experience suggests that the approach works well on either a set of discrete or continuous models and outperforms other model discrimination approaches.