387 resultados para automatic virtual camera
Resumo:
Identifying an individual from surveillance video is a difficult, time consuming and labour intensive process. The proposed system aims to streamline this process by filtering out unwanted scenes and enhancing an individual's face through super-resolution. An automatic face recognition system is then used to identify the subject or present the human operator with likely matches from a database. A person tracker is used to speed up the subject detection and super-resolution process by tracking moving subjects and cropping a region of interest around the subject's face to reduce the number and size of the image frames to be super-resolved respectively. In this paper, experiments have been conducted to demonstrate how the optical flow super-resolution method used improves surveillance imagery for visual inspection as well as automatic face recognition on an Eigenface and Elastic Bunch Graph Matching system. The optical flow based method has also been benchmarked against the ``hallucination'' algorithm, interpolation methods and the original low-resolution images. Results show that both super-resolution algorithms improved recognition rates significantly. Although the hallucination method resulted in slightly higher recognition rates, the optical flow method produced less artifacts and more visually correct images suitable for human consumption.
Resumo:
Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.
Resumo:
Camera Botanica 1 - testing a design process (unrealised buildings). ---------- Sited in a highly biodiverse and bushfire prone heathlands on the South-east coast of Western Australia, Camera Botanica 1 is a test of a new design methodology for achieving ecologically sustainable architecture in biodiverse, bushfire prone landscapes. ---------- The design methods were intensively site-based with the author-designer conducting his own site surveys using high-end professional grade surveying equipment such as: Real Time Kinematic GPS (landform survey); Terrestrial laser scanning (vegetation survey); laser levelling and Total Station surveys (erection of scaffolds and contour lines). ---------- This was the first time, internationally, that terrestrial laser scanning was used to measure vegetation. These precise surveys enabled the construction of highly detailed models and drawings - a facility that has not been available prior to this technology. ---------- Designed for a real client and a real site - Camera Botanica 1 is a hypothetical design outcome which demonstrates the efficacy of a new design methodology and thus expands on knowledge of the applicability of new surveying technologies to the design of ecologically sustainable architecture in biodiverse landscapes.
Resumo:
Camera Botanica 2 - testing a design process (unrealised building). Sited in a highly biodiverse and bushfire prone heathlands on the South-east coast of Western Australia, Camera Botanica 2 is a test of a new design methodology for achieving ecologically sustainable architecture in biodiverse, bushfire prone landscapes. ---------- The design method was intensively site-based with the author-designer conducting his own site surveys using high-end professional grade surveying equipment such as: Real Time Kinematic GPS (landform survey); Terrestrial laser scanning (vegetation survey); laser levelling and Total Station surveys (erection of scaffolds and contour lines). ---------- This was the first time, internationally, that terrestrial laser scanning was used to measure vegetation. These precise surveys enabled the construction of highly detailed models and drawings - a facility that has not been available prior to this technology. ---------- Designed for a real client and a real site - Camera Botanica 2 is a hypothetical design outcome which demonstrates the efficacy of a new design methodology and thus expands on knowledge of the applicability of new surveying technologies to the design of ecologically sustainable architecture in biodiverse landscapes.
Resumo:
This paper outlines how the Ortelia project’s 3D virtual reality models have the capacity to assist our understanding of sites of cultural heritage. The VR investigation of such spaces can be a valuable tool in 'real world' empirical research in theatre and spatiality. Through a demonstration of two of Ortelia's VR models (an art gallery and a theatre), we suggest how we might consider interpreting cultural space and sites as contributing significantly to cultural capital. We also introduce the potential for human interaction in such venues through motion-capture to discuss the potential for assessing how humans interact in such contexts.
Resumo:
Business Process Modelling is a fast growing field in business and information technology, which uses visual grammars to model and execute the processes within an organisation. However, many analysts present such models in a 2D static and iconic manner that is difficult to understand by many stakeholders. Difficulties in understanding such grammars can impede the improvement of processes within an enterprise due to communication problems. In this chapter we present a novel framework for intuitively visualising animated business process models in interactive Virtual Environments. We also show that virtual environment visualisations can be performed with present 2D business process modelling technology, thus providing a low barrier to entry for business process practitioners. Two case studies are presented from film production and healthcare domains that illustrate the ease with which these visualisations can be created. This approach can be generalised to other executable workflow systems, for any application domain being modelled.
Resumo:
Process modeling is a complex organizational task that requires many iterations and communication between the business analysts and the domain specialists involved in the process modeling. The challenge of process modeling is exacerbated, when the process of modeling has to be performed in a cross-organizational, distributed environment. Some systems have been developed to support collaborative process modeling, all of which use traditional 2D interfaces. We present an environment for collaborative process modeling, using 3D virtual environment technology. We make use of avatar instantiations of user ego centres, to allow for the spatial embodiment of the user with reference to the process model. We describe an innovative prototype collaborative process modeling approach, implemented as a modeling environment in Second Life. This approach leverages the use of virtual environments to provide user context for editing and collaborative exercises. We present a positive preliminary report on a case study, in which a test group modelled a business process using the system in Second Life.
Resumo:
This paper presents an overview of our demonstration of a low-bandwidth, wireless camera network where image compression is undertaken at each node. We briefly introduce the Fleck hardware platform we have developed as well as describe the image compression algorithm which runs on individual nodes. The demo will show real-time image data coming back to base as individual camera nodes are added to the network. Copyright 2007 ACM.
Resumo:
Prawns are a substantial Australian resource but presently are processed in a very labour-intensive manner. A prototype system has been developed for automatically grading and packing prawns into single-layer 'consumer packs' in which each prawn is approximately straight and has the same orientation. The novel technology includes a machine vision system that has been specially programmed to calculate relevant parameters at high speed and a gripper mechanism that can acquire, straighten and place prawns of various sizes. The system can be implemented on board a trawler or in an onshore processing facility. © 1993.
Resumo:
In this paper we describe the recent development of a low-bandwidth wireless camera sensor network. We propose a simple, yet effective, network architecture which allows multiple cameras to be connected to the network and synchronize their communication schedules. Image compression of greater than 90% is performed at each node running on a local DSP coprocessor, resulting in nodes using 1/8th the energy compared to streaming uncompressed images. We briefly introduce the Fleck wireless node and the DSP/camera sensor, and then outline the network architecture and compression algorithm. The system is able to stream color QVGA images over the network to a base station at up to 2 frames per second. © 2007 IEEE.
Resumo:
We describe a moving virtual fence algorithm for herding cows. Each animal in the herd is given a smart collar consisting of a GPS, PDA, wireless networking and a sound amplifier. Using the GPS, the animal's location can be verified relative to the fence boundary. When approaching the perimeter, the animal is presented with a sound stimulus whose effect is to move away. We have developed the virtual fence control algorithm for moving a herd. We present simulation results and data from experiments with 8 cows equipped with smart collars.
Resumo:
This paper describes a biologically inspired approach to vision-only simultaneous localization and mapping (SLAM) on ground-based platforms. The core SLAM system, dubbed RatSLAM, is based on computational models of the rodent hippocampus, and is coupled with a lightweight vision system that provides odometry and appearance information. RatSLAM builds a map in an online manner, driving loop closure and relocalization through sequences of familiar visual scenes. Visual ambiguity is managed by maintaining multiple competing vehicle pose estimates, while cumulative errors in odometry are corrected after loop closure by a map correction algorithm. We demonstrate the mapping performance of the system on a 66 km car journey through a complex suburban road network. Using only a web camera operating at 10 Hz, RatSLAM generates a coherent map of the entire environment at real-time speed, correctly closing more than 51 loops of up to 5 km in length.
Resumo:
The Simultaneous Localisation And Mapping (SLAM) problem is one of the major challenges in mobile robotics. Probabilistic techniques using high-end range finding devices are well established in the field, but recent work has investigated vision-only approaches. We present an alternative approach to the leading existing techniques, which extracts approximate rotational and translation velocity information from a vehicle-mounted consumer camera, without tracking landmarks. When coupled with an existing SLAM system, the vision module is able to map a 45 metre long indoor loop and a 1.6 km long outdoor road loop, without any parameter or system adjustment between tests. The work serves as a promising pilot study into ground-based vision-only SLAM, with minimal geometric interpretation of the environment.
Resumo:
Calibration of movement tracking systems is a difficult problem faced by both animals and robots. The ability to continuously calibrate changing systems is essential for animals as they grow or are injured, and highly desirable for robot control or mapping systems due to the possibility of component wear, modification, damage and their deployment on varied robotic platforms. In this paper we use inspiration from the animal head direction tracking system to implement a self-calibrating, neurally-based robot orientation tracking system. Using real robot data we demonstrate how the system can remove tracking drift and learn to consistently track rotation over a large range of velocities. The neural tracking system provides the first steps towards a fully neural SLAM system with improved practical applicability through selftuning and adaptation.
Resumo:
Simultaneous Localization And Mapping (SLAM) is one of the major challenges in mobile robotics. Probabilistic techniques using high-end range finding devices are well established in the field, but recent work has investigated vision only approaches. This paper presents a method for generating approximate rotational and translation velocity information from a single vehicle-mounted consumer camera, without the computationally expensive process of tracking landmarks. The method is tested by employing it to provide the odometric and visual information for the RatSLAM system while mapping a complex suburban road network. RatSLAM generates a coherent map of the environment during an 18 km long trip through suburban traffic at speeds of up to 60 km/hr. This result demonstrates the potential of ground based vision-only SLAM using low cost sensing and computational hardware.