252 resultados para algebraic immunity
Resumo:
Particulate matter (PM) emissions involve a complex mixture of solid and liquid particles suspended in a gas, where it is noted that PM emissions from diesel engines are a major contributor to the ambient air pollution problem. Whilst epidemiological studies have shown a link between increased ambient PM emissions and respiratory morbidity and mortality, studies of this design are not able to identify the PM constituents responsible for driving adverse respiratory health effects. This review explores in detail the physico-chemical properties of diesel particulate matter (DPM), and identifies the constituents of this pollution source that are responsible for the development of respiratory disease. In particular, this review shows that the DPM surface area and adsorbed organic compounds play a significant role in manifesting chemical and cellular processes that if sustained can lead to the development of adverse respiratory health effects. The mechanisms of injury involved included: inflammation, innate and acquired immunity, and oxidative stress. Understanding the mechanisms of lung injury from DPM will enhance efforts to protect at-risk individuals from the harmful respiratory effects of air pollutants.
Resumo:
Vitamin E is composed of two structurally similar compounds: tocopherols (TPs) and tocotrienols (T3). Despite being overshadowed by TP over the past few decades, T3 is now considered to be a promising anticancer agent due to its potent effects against a wide range of cancers. A growing body of evidence suggests that in addition to its antioxidative and pro-apoptotic functions, T3 possesses a number of anticancer properties that make it superior to TP. These include the inhibition of epithelial-to-mesenchymal transitions, the suppression of vascular endothelial growth factor tumor angiogenic pathway and the induction of antitumor immunity. More recently, T3, but not TP, has been shown to have chemosensitization and anti-cancer stem cell effects, further demonstrating the potential of T3 as an effective anticancer therapeutic agent. With most of the previous clinical studies on TP producing disappointing results, research has now focused on testing T3 as the next generation vitamin E for chemoprevention and cancer treatment. This review will summarize recent developments in the understanding of the anticancer effects of T3. We will also discuss current progress in clinical trials involving T3 as an adjuvant to conventional cancer therapy.
Resumo:
Human papillomaviruses (HPVs) are obligate epithelial pathogens and typically cause localized mucosal infections. We therefore hypothesized that T-cell responses to HPV antigens would be greater at sites of pathology than in the blood. Focusing on HPV-16 because of its association with cervical cancer, the magnitude of HPV-specific T-cell responses at the cervix was compared with those in the peripheral blood by intracellular cytokine staining following direct ex vivo stimulation with both virus-like particles assembled from the major capsid protein L1, and the major HPV oncoprotein, E7. We show that both CD4 + and CD8 + T cells from the cervix responded to the HPV-16 antigens and that interferon-γ (IFN-γ) production was HPV type-specific. Comparing HPV-specific T-cell IFN-γ responses at the cervix with those in the blood, we found that while CD4 + and CD8 + T-cell responses to L1 were significantly correlated between compartments (P = 0.02 and P = 0.05, respectively), IFN-γ responses in both T-cell subsets were significantly greater in magnitude at the cervix than in peripheral blood (P = 0.02 and P = 0.003, respectively). In contrast, both CD4 + and CD8 + T-cell IFN-γ responses to E7 were of similar magnitude in both compartments and CD8 + responses were significantly correlated between these distinct immunological compartments (P = 0.04). We therefore show that inflammatory T-cell responses against L1 (but not E7) demonstrate clear compartmental bias and the magnitude of these responses do reflect local viral replication but that correlation of HPV-specific responses between compartments indicates their linkage.
Resumo:
As cervical cancer is causally associated with 14 high-risk types of human papillomavirus (HPV), a successful HPV vaccine will have a major impact on this disease. Although some persistent HPV infections progress to cervical cancer, host immunity is generally able to clear most HPV infections. Both cell-mediated and antibody responses have been implicated in influencing the susceptibility, persistence or clearance of genital HPV infection. There have been two clinical trials that show that vaccines based on virus-like particles (VLPs) made from the major capsid protein, L1, are able to type specifically protect against cervical intra-epithelial neoplasia and infection. However, there is no evidence that even a mixed VLP vaccine will protect against types not included in the vaccine, and a major challenge that remains is how to engineer protection across a broader spectrum of viruses. Strategies for production of HPV vaccines using different vaccine vectors and different production systems are also reviewed. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. Taxonomy: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. Physical properties: MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 × 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. Disease symptoms: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: Infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease control: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maiz genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. Useful websites: 〈http://www.mcb.uct.ac.za/MSV/mastrevirus.htm〉; 〈http://www. danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus. htm〉. © 2009 Blackwell Publishing Ltd.
Resumo:
The "AIDS Vaccine 2008" Conference was held in Cape Town, South Africa (October 13 to 16, 2008) and organized, under the aegis of the Global HIV Vaccine Enterprise, by Dr. Lynn Morris (Chair of the Conference) National Institute of Communicable Diseases; Dr. Koleka Mlisana from CAPRISA, University KwaZulu-Natal, Durban, Dr. Glenda Gray from Perinatal HIV Research Unit, University Witwatersrand, Johannesburg and Dr. Carolyn Williamson from Institute of Infectious Diseses. and Molecular Medicine, UCT, Cape Town (Co-Chairs of the Conference). Since the first AIDS Vaccine conference, organized in Paris in 2000, this was the first time it was held outside of the U.S. and Europe, and involved nearly 1,000 participants. Besides three Plenary Sessions with ten state-of-the-art plenary lectures and one Keynote Lecture given by Dr. A.S. Fauci (Director of NIAID, NIH, USA), the Conference was organized in nine oral sessions, four poster discussion groups covering a wide spectrum of scientific information relating to HIV vaccine research and development. Moreover three Symposia, two Special Sessions, one Roundtable as well as two Debates were held, the latter focusing on current controversial topics. The conference opening was memorable for a number of reasons: among these was the presence of South Africa's new Minister of Health, Barbara Hogan who, in her first speech in a major forum as a senior member of the SA Government, affirmed that HIV causes AIDS, and that the search for a vaccine is of paramount importance to SA and the rest of the world. A scientific summary of the Conference is reported in the present article, divided into four major topics: (1) vaccine concepts and design; (2) T-cell immunology and innate immunity; (3) B-cell immunology, neutralizing antibodies and mucosal immunology; and (4) clinical trials. © 2009 Landes Bioscience.
Resumo:
Tumour necrosis factor (TNF) is a pleiotropic cytokine with dual roles in cancer biology including prostate cancer (PCa). On the one hand, there is evidence that it stimulates tumour angiogenesis, is involved in the initiation of PCa from an androgen-dependent to a castrate resistant state, plays a role in epithelial to mesenchymal plasiticity, and may contribute to the aberrant regulation of eicosanoid pathways. On the other hand, TNF has also been reported to inhibit neovascularisation, induce apoptosis of PCa cells, and stimulate anti-tumour immunity. Much of the confusion surrounding its seemingly paradoxical roles in cancer biology stems from the dependence of its effects on the biological model within which TNF is investigated. This review will address some of these issues, and also discuss on the therapeutic implications.
Resumo:
Alterations in innate immunity that predispose to chronic obstructive pulmonary disease (COPD) exacerbations are poorly understood. We examined innate immunity gene expression in peripheral blood polymorphonuclear leukocytes (PMN) and monocytes stimulated by Haemophilus influenzae and Streptococcus pneumoniae. Thirty COPD patients (15 rapid and 15 non-rapid lung function decliners) and 15 smokers without COPD were studied. Protein expression of IL-8, IL-6, TNF-α and IFN-γ (especially monocytes) increased with bacterial challenge. In monocytes stimulated with S. pneumoniae, TNF-α protein expression was higher in COPD (non-rapid decliners) than in smokers. In co-cultures of monocytes and PMN, mRNA expression of TGF-β1 and MYD88 was up-regulated, and CD14, TLR2 and IFN-γ down-regulated with H. influenzae challenge. TNF-α mRNA expression was increased with H. influenzae challenge in COPD. Cytokine responses were similar between rapid and non-rapid decliners. TNF-α expression was up-regulated in non-rapid decliners in response to H. influenzae (monocytes) and S. pneumoniae (co-culture of monocytes and PMN). Exposure to bacterial pathogens causes characteristic innate immune responses in peripheral blood monocytes and PMN in COPD. Bacterial exposure significantly alters the expression of TNF-α in COPD patients, although not consistently. There did not appear to be major differences in innate immune responses between rapid and non-rapid decliners.
Resumo:
Vertical displacements are one of the most relevant parameters for structural health monitoring of bridges in both the short and long terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fiber-optic technologies, fiber Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, using FBG sensors is proposed to develop a simple, inexpensive and practical method to measure vertical displacements of bridges. A curvature approach for vertical displacement measurements using curvature measurements is proposed. In addition, with the successful development of FBG tilt sensors, an inclination approach is also proposed using inclination measurements. A series of simulation tests of a full- scale bridge was conducted. It shows that both of the approaches can be implemented to determine vertical displacements for bridges with various support conditions, varying stiffness (EI) along the spans and without any prior known loading. These approaches can thus measure vertical displacements for most of slab-on-girder and box-girder bridges. Besides, the approaches are feasible to implement for bridges under various loading. Moreover, with the advantages of FBG sensors, they can be implemented to monitor bridge behavior remotely and in real time. A beam loading test was conducted to determine vertical displacements using FBG strain sensors and tilt sensors. The discrepancies as compared with dial gauges reading using the curvature and inclination approaches are 0.14mm (1.1%) and 0.41mm (3.2%), respectively. Further recommendations of these approaches for developments will also be discussed at the end of the paper.
Resumo:
The Pattern and Structure Mathematics Awareness Project (PASMAP) has investigated the development of patterning and early algebraic reasoning among 4 to 8 year olds over a series of related studies. We assert that an awareness of mathematical pattern and structure enables mathematical thinking and simple forms of generalisation from an early age. The project aims to promote a strong foundation for mathematical development by focusing on critical, underlying features of mathematics learning. This paper provides an overview of key aspects of the assessment and intervention, and analyses of the impact of PASMAP on students’ representation, abstraction and generalisation of mathematical ideas. A purposive sample of four large primary schools, two in Sydney and two in Brisbane, representing 316 students from diverse socio-economic and cultural contexts, participated in the evaluation throughout the 2009 school year and a follow-up assessment in 2010. Two different mathematics programs were implemented: in each school, two Kindergarten teachers implemented the PASMAP and another two implemented their regular program. The study shows that both groups of students made substantial gains on the ‘I Can Do Maths’ assessment and a Pattern and Structure Assessment (PASA) interview, but highly significant differences were found on the latter with PASMAP students outperforming the regular group on PASA scores. Qualitative analysis of students’ responses for structural development showed increased levels for the PASMAP students; those categorised as low ability developed improved structural responses over a relatively short period of time.
Resumo:
The steady problem of free surface flow due to a submerged line source is revisited for the case in which the fluid depth is finite and there is a stagnation point on the free surface directly above the source. Both the strength of the source and the fluid speed in the far field are measured by a dimensionless parameter, the Froude number. By applying techniques in exponential asymptotics, it is shown that there is a train of periodic waves on the surface of the fluid with an amplitude which is exponentially small in the limit that the Froude number vanishes. This study clarifies that periodic waves do form for flows due to a source, contrary to a suggestion by Chapman & Vanden-Broeck (2006, J. Fluid Mech., 567, 299--326). The exponentially small nature of the waves means they appear beyond all orders of the original power series expansion; this result explains why attempts at describing these flows using a finite number of terms in an algebraic power series incorrectly predict a flat free surface in the far field.
Resumo:
CC-chemokine receptor 2 (CCR2) and its ligand, monocyte chemotactic protein-1 (MCP-1, also known as CCL2), are crucial for the recruitment of monocytes/macrophages to sites of inflammation. We conducted a series of experiments to investigate the relationship between stress, monocyte CCR2 expression and migration activity. First, we collected peripheral blood mononuclear cells (PBMC) from untrained subjects (n=8) and measured CCR2 expression on CD14(+) monocytes cultured with cortisol, epinephrine and norepinephrine. Second, we collected PBMC from the subjects before and after they cycled for 60 min at 70% peak O(2) uptake (VO2(peak)), and measured alterations in CCR2 expression on monocytes following exercise. Third, we cultured PBMC with serum obtained before and after exercise and the glucocorticoid antagonist RU-486 to determine the effect of cortisol on CCR2 expression in vitro. Last, we measured the ability of PBMC treated with serum or cortisol to migrate through membrane filters in response to CCL2. Cortisol (but not epinephrine or norepinephrine) increased CCR2 expression on monocytes in a dose- and time-dependent manner. Exercise did not influence CCR2 expression on PBMC, whereas incubation of PBMC with post-exercise serum significantly increased CCR2 expression. Both cortisol and post-exercise serum increased the migration of PBMC toward CCL2. The increase in CCR2 expression on PBMC following stimulation with cortisol and serum was blocked by the glucocorticoid receptor antagonist RU-486. In conclusion, cortisol released during exercise increased monocyte CCR2 expression and migration activity in vitro. These alterations may influence inflammation and regeneration of damaged tissue after acute stress.
Resumo:
As a novel sensitive element and due to its advantages of immunity to electrical interference, distributed measurement, etc., fiber Bragg grating (FBG) has been researched widely. To realize the substitution of high accurate electronic temperature sensors, high sensitive FBG temperature sensors can be made by taking advantage of its characters of being sensitive to both temperature and strain. Although there are reports about high sensitive FBG temperature sensors, however, few about their stability have been done. We manufactured a high sensitive FBG temperature sensor, and put it together with an average FBG temperature sensor and an electronic crystal temperature sensor into a stainless steel container filled by water to observe the room temperature change. By comparing their results in two weeks, we have found out that: although the high sensitive FBG temperature sensor is in much better agreement with the electronic crystal sensor than the average FBG sensor is, it has occurred some small drifts. Because the drifts appeared in the process of further pulling the FBG, it might be a result of the slip of the FBG fixing points. This contributes some good experiences to the application of FBG in high accuracy temperature measurement.
Resumo:
A genome-wide search for markers associated with BSE incidence was performed by using Transmission-Disequilibrium Tests (TDTs). Significant segregation distortion, i.e., unequal transmission probabilities of alleles within a locus, was found for three marker loci on Chromosomes (Chrs) 5, 10, and 20. Although TDTs are robust to false associations owing to hidden population substructures, it cannot distinguish segregation distortion caused by a true association between a marker and bovine spongiform encephalopathy (BSE) from a population-wide distortion. An interaction test and a segregation distortion analysis in half-sib controls were used to disentangle these two alternative hypotheses. None of the markers showed any significant interaction between allele transmission rates and disease status, and only the marker on Chr 10 showed a significant segregation distortion in control individuals. Nevertheless, the control group may have been a mixture of resistant and susceptible but unchallenged individuals. When new genotypes were generated in the vicinity of these three markers, evidence for an association with BSE was confirmed for the locus on Chr 5.
Resumo:
Despite the presence of many regulations governing the operation of heavy vehicles and supply chains in Australia, the truck driving sector continues to have the highest incidence of fatal injuries compared to all other industries. The working environment has been the focus of attention by safety researchers during the past few decades, with particular consideration been given to the concept ‘safety culture’ and how to maintain, modify and advance responses to occupational risk. One important aspect of the heavy industry which sets it apart is the existence of cultural or sub-cultural influences at an industry wide and occupation-specific level rather than organisational level. This paper reports on the findings of stakeholder’s perceptions of the influences of power and control, and culture on industry safety. In-depth structured interviews were conducted during 2011 with Australian industry stakeholders (n=31). The questioning surrounded decision-making processes with regards to identifying risks, self-monitoring and reducing risky activities; as well as how power-affected relationships may influence the operational performance of supply chains and impacts on driver safety. One of the most significant findings from these interviews relates to the notion of power. The perception that the ‘Customer is King’ was widely viewed, with the majority of stakeholders believing that there exists a ‘master slave mentality’ in the industry. There appears to be great frustration in the industry as to the apparent immunity of customers (particularly retail supply chains) to their responsibilities. There was also a strong perception that the customer holds the balance of power by covertly employing remuneration-related incentives and pressures. Smaller trucking companies are perceived as being more vulnerable to the pressure of customer expectations.