854 resultados para Version Control
Resumo:
This paper proposes a new approach for delay-dependent robust H-infinity stability analysis and control synthesis of uncertain systems with time-varying delay. The key features of the approach include the introduction of a new Lyapunov–Krasovskii functional, the construction of an augmented matrix with uncorrelated terms, and the employment of a tighter bounding technique. As a result, significant performance improvement is achieved in system analysis and synthesis without using either free weighting matrices or model transformation. Examples are given to demonstrate the effectiveness of the proposed approach.
Resumo:
Previous research has demonstrated the importance of the qualities of the teacher-child relationship on children’s development. Close teacher-child relationships are especially important for children at risk. Positive relationships have been shown to have beneficial effects on children’s social and academic development (Birch & Ladd, 1997; Pianta & Stuhlman, 2004). Children with language difficulties are likely to face increased risks with regard to long term social and academic outcomes. The purpose of the current research was to gain greater understanding of the qualities of teacher-child relationships for young children with parent reported language concerns. The research analyses completed for this thesis involved the use of data from the public-access database of Growing Up in Australia: The Longitudinal Study of Australian Children (LSAC). LSAC is a longitudinal study involving a nationally representative sample of 10,000 Australian children. Data are being collected biennially from 2004 (Wave 1 data collection) until 2010 (Wave 4 data collection). LSAC has a cross-sequential research design involving two cohorts, an infant cohort (0-1 year at age of recruitment) and a kindergarten cohort (4-5 years at age of recruitment). Two studies are reported in this thesis using data for the LSAC Kindergarten Cohort which had 4983 child participants at recruitment. Study 1 used Wave 1 data to identify the differences between teacher-child relationship qualities for children with parent reported language concerns and their peers. Children identified by parents for whom concerns were held about their receptive and expressive language, as measured by items from the Parents’ Evaluation of Developmental Status (PEDS) (Glascoe, 2000) were the target (at risk) group in the study (n = 210). A matched case control group of peers (n = 210), matched on the child characteristics of sex, age, cultural and linguistic differences (CALD), and socio-economic positioning (SEP), were the comparison group for this analysis. Teacher-child relationship quality was measured by teacher reports on the Closeness and Conflict scales from the short version of the Student-Teacher Relationship Scale (STRS) (Pianta, 2001). There were statistically significant differences in the levels of closeness and conflict between the two groups. The target group had relationships with their teachers that had lower levels of closeness and higher levels of conflict than the control group. Study 2 reports analyses that examined the stability of the qualities of the teacher-child relationships at Wave 1 (4-5 years) and the qualities of the teacher-child relationships at Wave 2 (6-7 years). This time frame crosses the period of the children’s transition to school. The study examined whether early patterns in the qualities of the teacher-child relationship for children with parent reported language concerns at Wave 1 predicted the qualities of the teacher-child relationship outcomes in the early years of formal school. The sample for this study consisted of the group of children identified with PEDS language concerns at Wave 1 who also had teacher report data at Wave 2 (n = 145). Teacher-child relationship quality at Wave 1 and Wave 2 was again measured by the STRS scales of Closeness and Conflict. Results from multiple regression models indicated that teacher-child relationship quality at Wave 1 significantly contributed to the prediction of the quality of the teacher-child relationship at Wave 2, beyond other predictor variables included in the regression models. Specifically, Wave 1 STRS Closeness scores were the most significant predictor for STRS Closeness scores at Wave 2, while Wave 1 STRS Conflict scores were the only significant predictor for Wave 2 STRS Conflict outcomes. These results indicate that the qualities of the teacher-child relationship experienced prior to school by children with parent reported language concerns remained stable across transitions into formal schooling at which time the child had a different teacher. The results of these studies provide valuable insight into the nature of teacher-child relationship quality for young children with parent reported language concerns. These children experienced teacher-child relationships of a lower quality when compared with peers and, additionally, the qualities of these relationships prior to formal schooling were predictive of the qualities of the relationships in the early years of formal schooling. This raises concerns, given the increased risks of poorer social and academic outcomes already faced by children with language difficulties, that these early teacher-child relationships have an impact on future teacher-child relationships. Results of these studies are discussed with these considerations in mind and also discussed in terms of the implications for educational theory, policy and practice.
Resumo:
This paper represents my attempt to turn the gaze and demonstrate how Indigenous Studies is controlled in some Australian universities in ways that witness Indigenous peoples being further marginalised, denigrated and exploited. I have endeavoured to do this through sharing an experience as a case study. I have opted to write about it as a way of exposing the problematic nature of racism, systemic marginalisation, white race privilege and radicalised subjectivity played out within an Australian higher education institution and because I am dissatisfied with the on-going status quo. In bringing forth analysis to this case study, I reveal the relationships between oppression, white race privilege and institutional privilege and the epistemology that maintains them. In moving from the position of being silent on this experience to speaking about it, I am able to move from the position of object to subject and to gain a form of liberated voice (hooks 1989:9). Furthermore, I am hopeful that it will encourage others to examine their own practices within universities and to challenge the domination that continues to subjugate Indigenous peoples.
Resumo:
Ameliorated strategies were put forward to improve the model predictive control in reducing the wind induced vibration of spatial latticed structures. The dynamic matrix control (DMC) predictive method was used and the reference trajectory which is called the decaying functions was suggested for the analysis of spatial latticed structure (SLS) under wind loads. The wind-induced vibration control model of SLS with improved DMC model predictive control was illustrated, then the different feedback strategies were investigated and a typical SLS was taken as example to investigate the reduction of wind-induced vibration. In addition, the robustness and reliability of DMC strategy were discussed by varying the model configurations.
Resumo:
Based on Newmark-β method, a structural vibration response is predicted. Through finding the appropriate control force parameters within certain ranges to optimize the objective function, the predictive control of the structural vibration is achieved. At the same time, the numerical simulation analysis of a two-storey frame structure with magneto-rheological (MR) dampers under earthquake records is carried out, and the parameter influence on structural vibration reduction is discussed. The results demonstrate that the semi-active control based on Newmark-β predictive algorithm is better than the classical control strategy based on full-state feedback control and has remarkable advantages of structural vibration reduction and control robustness.
Resumo:
For the last two decades heart disease has been the highest single cause of death for the human population. With an alarming number of patients requiring heart transplant, and donations not able to satisfy the demand, treatment looks to mechanical alternatives. Rotary Ventricular Assist Devices, VADs, are miniature pumps which can be implanted alongside the heart to assist its pumping function. These constant flow devices are smaller, more efficient and promise a longer operational life than more traditional pulsatile VADs. The development of rotary VADs has focused on single pumps assisting the left ventricle only to supply blood for the body. In many patients however, failure of both ventricles demands that an additional pulsatile device be used to support the failing right ventricle. This condition renders them hospital bound while they wait for an unlikely heart donation. Reported attempts to use two rotary pumps to support both ventricles concurrently have warned of inherent haemodynamic instability. Poor balancing of the pumps’ flow rates quickly leads to vascular congestion increasing the risk of oedema and ventricular ‘suckdown’ occluding the inlet to the pump. This thesis introduces a novel Bi-Ventricular Assist Device (BiVAD) configuration where the pump outputs are passively balanced by vascular pressure. The BiVAD consists of two rotary pumps straddling the mechanical passive controller. Fluctuations in vascular pressure induce small deflections within both pumps adjusting their outputs allowing them to maintain arterial pressure. To optimise the passive controller’s interaction with the circulation, the controller’s dynamic response is optimised with a spring, mass, damper arrangement. This two part study presents a comprehensive assessment of the prototype’s ‘viability’ as a support device. Its ‘viability’ was considered based on its sensitivity to pathogenic haemodynamics and the ability of the passive response to maintain healthy circulation. The first part of the study is an experimental investigation where a prototype device was designed and built, and then tested in a pulsatile mock circulation loop. The BiVAD was subjected to a range of haemodynamic imbalances as well as a dynamic analysis to assess the functionality of the mechanical damper. The second part introduces the development of a numerical program to simulate human circulation supported by the passively controlled BiVAD. Both investigations showed that the prototype was able to mimic the native baroreceptor response. Simulating hypertension, poor flow balancing and subsequent ventricular failure during BiVAD support allowed the passive controller’s response to be assessed. Triggered by the resulting pressure imbalance, the controller responded by passively adjusting the VAD outputs in order to maintain healthy arterial pressures. This baroreceptor-like response demonstrated the inherent stability of the auto regulating BiVAD prototype. Simulating pulmonary hypertension in the more observable numerical model, however, revealed a serious issue with the passive response. The subsequent decrease in venous return into the left heart went unnoticed by the passive controller. Meanwhile the coupled nature of the passive response not only decreased RVAD output to reduce pulmonary arterial pressure, but it also increased LVAD output. Consequently, the LVAD increased fluid evacuation from the left ventricle, LV, and so actually accelerated the onset of LV collapse. It was concluded that despite the inherently stable baroreceptor-like response of the passive controller, its lack of sensitivity to venous return made it unviable in its present configuration. The study revealed a number of other important findings. Perhaps the most significant was that the reduced pulse experienced during constant flow support unbalanced the ratio of effective resistances of both vascular circuits. Even during steady rotary support therefore, the resulting ventricle volume imbalance increased the likelihood of suckdown. Additionally, mechanical damping of the passive controller’s response successfully filtered out pressure fluctuations from residual ventricular function. Finally, the importance of recognising inertial contributions to blood flow in the atria and ventricles in a numerical simulation were highlighted. This thesis documents the first attempt to create a fully auto regulated rotary cardiac assist device. Initial results encourage development of an inlet configuration sensitive to low flow such as collapsible inlet cannulae. Combining this with the existing baroreceptor-like response of the passive controller will render a highly stable passively controlled BiVAD configuration. The prototype controller’s passive interaction with the vasculature is a significant step towards a highly stable new generation of artificial heart.
Resumo:
A cross-sectional study was performed to investigate the prevalence and predictors of suicidal ideation and past suicide attempt in an Australian sample of human imumunodeficiency virus (HIV)-positive and HIV-negative homosexual and bisexual men. Sixty-five HIV-negative and 164 HIV-positive men participated. A suicidal ideation score was derived from using five items selected from the Beck Depression Inventory and the General Health Questionnaire (28-item version). Lifetime and current prevalence rates of psychiatric disorder were evaluated with the Diagnostic Interview Schedule Version-III-R. The HIV-positive (Centers for Disease Control and Prevention [CDC] Stage IV) men (n=85) had significantly higher total suicidal ideation scores than the asymptomatic HIV-positive men (CDC Stage II/III) (n=79) and the HIV-negative men. High rates of past suicide attempt were detected in the HIV-negative (29%) and HIV-positive men (21%). Factors associated with suicidal ideation included being HIV-positive, the presence of current psychiatric disorder, higher neuroticism scores, external locus of control, and current unemployment. In the HIV-positive group analyzed separately, higher suicidal ideation was discriminated by the adjustment to HIV diagnosis (greater hopelessness and lower fighting spirit), disease factors (greater number of current acquired immunodeficiency syndrome [AIDS]-related conditions), and background variables (neuroticism). Significant predictors of a past attempted suicide were a positive lifetime history of psychiatric disorder (particularly depression diagnoses), a lifetime history of injection drug use, and a family history of suicide attempts. The findings indicate increased levels of suicidal ideation in symptomatic HIV-positive men and highlight the role that multiple psychosocial factors associated with suicidal ideation and attempted suicide play in this population.
Resumo:
In this paper, the stability of an autonomous microgrid with multiple distributed generators (DG) is studied through eigenvalue analysis. It is assumed that all the DGs are connected through Voltage Source Converter (VSC) and all connected loads are passive. The VSCs are controlled by state feedback controller to achieve desired voltage and current outputs that are decided by a droop controller. The state space models of each of the converters with its associated feedback are derived. These are then connected with the state space models of the droop, network and loads to form a homogeneous model, through which the eigenvalues are evaluated. The system stability is then investigated as a function of the droop controller real and reac-tive power coefficients. These observations are then verified through simulation studies using PSCAD/EMTDC. It will be shown that the simulation results closely agree with stability be-havior predicted by the eigenvalue analysis.
Resumo:
In this paper, a new power sharing control method for a microgrid with several distributed generation units is proposed. The presence of both inertial and noninertial sources with different power ratings, maximum power point tracking, and various types of loads pose a great challenge for the power sharing and system stability. The conventional droop control method is modified to achieve the desired power sharing ensuring system stability in a highly resistive network. A transformation matrix is formed to derive equivalent real and reactive power output of the converter and equivalent feedback gain matrix for the modified droop equation. The proposed control strategy, aimed for the prototype microgrid planned at Queensland University of Technology, is validated through extensive simulation results using PSCAD/EMTDC software.
Resumo:
This article reports an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous polyurethane (PU) scaffolds for cardiac tissue engineering. The solvent for the preparation of the PU scaffolds was a mixture of dimethylformamide (DFM) and tetrahydrofuran (THF). The enhanced method involved the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and the pore interconnectivity of scaffolds. Highly porous three-dimensional scaffolds with a well interconnected porous structure could be achieved at the polymer solution concentration of up to 20% by air or vacuum drying to remove the solvent. When the salt particle sizes of 212-295, 295-425, or 425-531 µm and a 15% w/v polymer solution concentration were used, the porosity of the scaffolds was between 83-92% and the compression moduli of the scaffolds were between 13 kPa and 28 kPa. Type I collagen acidic solution was introduced into the pores of a PU scaffold to coat the collagen onto the pore walls throughout the whole PU scaffold. The human aortic endothelial cells (HAECs) cultured in the collagen-coated PU scaffold for 2 weeks were observed by scanning electron microscopy (SEM). It was shown that the enhanced SCPL method and the collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffold.
Resumo:
The objective of the present study was to predict the economic consequences of healthcare-acquired infections arising among admissions to Australian acute care hospitals. A quantitative algorithm informed by epidemiological and economic data was developed. All acute care hospitals in Australia were included in the study and the participants included all admissions to general medical and general surgical specialties. The main outcome measures were the numbers of cases of healthcare-acquired infection and bed days lost annually. It was estimated that there are 175 153 (95% credible interval 155 911 : 195 168) cases of healthcare-acquired infection among admissions to Australian hospitals annually, and the extra stay in hospital to treat symptoms accounts for 854 289 bed days (95% credible interval 645 091 : 1 096 244). If rates were reduced by 1%, then 150 158 bed days would be released for alternative uses. This would allow ~38 500 new admissions. Healthcare-acquired infections in patients cause bed blocks in Australian hospitals. The cost-effectiveness of hospital services might be improved by allocating more resources to infection control, releasing beds and allowing new admissions. There exists an opportunity to improve the efficiency of the Australian health care system.
Resumo:
The automation of various aspects of air traffic management has many wide-reaching benefits including: reducing the workload for Air Traffic Controllers; increasing the flexibility of operations (both civil and military) within the airspace system through facilitating automated dynamic changes to en-route flight plans; ensuring safe aircraft separation for a complex mix of airspace users within a highly complex and dynamic airspace management system architecture. These benefits accumulate to increase the efficiency and flexibility of airspace use(1). Such functions are critical for the anticipated increase in volume of manned and unmanned aircraft traffic. One significant challenge facing the advancement of airspace automation lies in convincing air traffic regulatory authorities that the level of safety achievable through the use of automation concepts is comparable to, or exceeds, the accepted safety performance of the current system.
Resumo:
Decentralized and regional load-frequency control of power systems operating in normal and near-normal conditions has been well studied; and several analysis/synthesis approaches have been developed during the last few decades. However in contingency and off-normal conditions, the existing emergency control plans, such as under-frequency load shedding, are usually applied in a centralized structure using a different analysis model. This paper discusses the feasibility of using frequency-based emergency control schemes based on tie-line measurements and local information available within a control area. The conventional load-frequency control model is generalized by considering the dynamics of emergency control/protection schemes and an analytic approach to analyze the regional frequency response under normal and emergency conditions is presented.
Resumo:
Discrete event-driven simulations of digital communication networks have been used widely. However, it is difficult to use a network simulator to simulate a hybrid system in which some objects are not discrete event-driven but are continuous time-driven. A networked control system (NCS) is such an application, in which physical process dynamics are continuous by nature. We have designed and implemented a hybrid simulation environment which effectively integrates models of continuous-time plant processes and discrete-event communication networks by extending the open source network simulator NS-2. To do this a synchronisation mechanism was developed to connect a continuous plant simulation with a discrete network simulation. Furthermore, for evaluating co-design approaches in an NCS environment, a piggybacking method was adopted to allow the control period to be adjusted during simulations. The effectiveness of the technique is demonstrated through case studies which simulate a networked control scenario in which the communication and control system properties are defined explicitly.
Resumo:
This paper presents a multi-objective optimization strategy for heavy truck suspension systems based on modified skyhook damping (MSD) control, which improves ride comfort and road-friendliness simultaneously. A four-axle heavy truck-road coupling system model was established using functional virtual prototype technology; the model was then validated through a ride comfort test. As the mechanical properties and time lag of dampers were taken into account, MSD control of active and semi-active dampers was implemented using Matlab/Simulink. Through co-simulations with Adams and Matlab, the effects of passive, semi-active MSD control, and active MSD control were analyzed and compared; thus, control parameters which afforded the best integrated performance were chosen. Simulation results indicated that MSD control improves a truck’s ride comfort and roadfriendliness, while the semi-active MSD control damper obtains road-friendliness comparable to the active MSD control damper.