424 resultados para Thiokol Corporation. Space Operations.
Resumo:
Operations management is an area concerned with the production of goods and services ensuring that business operations are efficient in utilizing resource and effective to meet customer requirements. It deals with the design and management of products, processes, services and supply chains and considers the acquisition, development, and effective and efficient utilization of resources. Unlike other engineering subjects, content of these units could be very wide and vast. It is therefore necessary to cover the content that is most related to the contemporary industries. It is also necessary to understand what engineering management skills are critical for engineers working in the contemporary organisations. Most of the operations management books contain traditional Operations Management techniques. For example ‘inventory management’ is an important topic in operations management. All OM books deal with effective method of inventory management. However, new trend in OM is Just in time (JIT) delivery or minimization of inventory. It is therefore important to decide whether to emphasise on keeping inventory (as suggested by most books) or minimization of inventory. Similarly, for OM decisions like forecasting, optimization and linear programming most organisations now a day’s use software. Now it is important for us to determine whether some of these software need to be introduced in tutorial/ lab classes. If so, what software? It is established in the Teaching and Learning literature that there must be a strong alignment between unit objectives, assessment and learning activities to engage students in learning. Literature also established that engaging students is vital for learning. However, engineering units (more specifically Operations management) is quite different from other majors. Only alignment between objectives, assessment and learning activities cannot guarantee student engagement. Unit content must be practical oriented and skills to be developed should be those demanded by the industry. Present active learning research, using a multi-method research approach, redesigned the operations management content based on latest developments in Engineering Management area and the necessity of Australian industries. The redesigned unit has significantly helped better student engagement and better learning. It was found that students are engaged in the learning if they find the contents are helpful in developing skills that are necessary in their practical life.
Resumo:
A hierarchical structure is used to represent the content of the semi-structured documents such as XML and XHTML. The traditional Vector Space Model (VSM) is not sufficient to represent both the structure and the content of such web documents. Hence in this paper, we introduce a novel method of representing the XML documents in Tensor Space Model (TSM) and then utilize it for clustering. Empirical analysis shows that the proposed method is scalable for a real-life dataset as well as the factorized matrices produced from the proposed method helps to improve the quality of clusters due to the enriched document representation with both the structure and the content information.
Resumo:
The Australian beach is now accepted as a significant part of Australian national culture and identity. However, Huntsman (2001) and Booth (2001) both believe that the beach is dying: “intellectuals have failed to apply to the beach the attention they have lavished on the bush…” (Huntsman 2001, 218). Yet the beach remains a prominent image in contemporary literature and film; authors such as Tim Winton and Robert Drewe frequently set their stories in and around the coast. Although initially considered a space of myth (Fiske, Hodge, and Turner 1987), Meaghan Morris labelled the beach as ‘ordinary’ (1998), and as recently as 2001 in the wake of the Sydney Olympic Games, Bonner, McKee, and Mackay termed the beach ‘tacky’ and ‘familiar’. The beach, it appears, defies an easy categorisation. In fact, I believe the beach is more than merely mythic or ordinary, or a combination of the two. Instead it is an imaginative space, seamlessly shifting its metaphorical meanings dependent on readings of the texts. My studies examine the beach through five common beach myths; this paper will explore the myth of the beach as an egalitarian space. Contemporary Australian national texts no longer conform to these mythical representations – (in fact, was the beach ever a space of equality?), instead creating new definitions for the beach space that continually shifts in meaning. Recent texts such as Tim Winton’s Breath (2008) and Stephen Orr’s Time’s Long Ruin (2010) lay a more complex metaphorical meaning upon the beach space. This paper will explore the beach as a space of egalitarianism in conjunction with recent Australian fiction and films in order to discover how the contemporary beach is represented.
Resumo:
Communications media have been central to globalizing processes in modern societies. As technological forms, communication media have long extended the transmission of messages across space in ways that challenge the socio-cultural dimensions of the nation-state and national cultures, and the global communications infrastructure that has developed rapidly since the 1980s has further promoted global information flows and cross-border commercial activity. As institutional and organisational forms through which information and content is produced and distributed, media corporations have been at the forefront of international expansion of their market reach and the development of new sites of production and distribution, and media industries are highly dynamic on a global scale. Finally, as cultural forms, or providers of the informational and symbolic content that is received and used by consumers/audiences/users, global media constitute a core means through which people make sense of events in distant places, and the information and images that they carry are central to the existence of common systems of meaning and understanding across nations, regions and cultures.
Resumo:
This paper presents a method for calculating the in-bucket payload volume on a dragline for the purpose of estimating the material’s bulk density in real-time. Knowledge of the bulk density can provide instant feedback to mine planning and scheduling to improve blasting and in turn provide a more uniform bulk density across the excavation site. Furthermore costs and emissions in dragline operation, maintenance and downstream material processing can be reduced. The main challenge is to determine an accurate position and orientation of the bucket with the constraint of real-time performance. The proposed solution uses a range bearing and tilt sensor to locate and scan the bucket between the lift and dump stages of the dragline cycle. Various scanning strategies are investigated for their benefits in this real-time application. The bucket is segmented from the scene using cluster analysis while the pose of the bucket is calculated using the iterative closest point (ICP) algorithm. Payload points are segmented from the bucket by a fixed distance neighbour clustering method to preserve boundary points and exclude low density clusters introduced by overhead chains and the spreader bar. A height grid is then used to represent the payload from which the volume can be calculated by summing over the grid cells. We show volume calculated on a scaled system with an accuracy of greater than 95 per cent.
Resumo:
Traditional approaches to the use of machine learning algorithms do not provide a method to learn multiple tasks in one-shot on an embodied robot. It is proposed that grounding actions within the sensory space leads to the development of action-state relationships which can be re-used despite a change in task. A novel approach called an Experience Network is developed and assessed on a real-world robot required to perform three separate tasks. After grounded representations were developed in the initial task, only minimal further learning was required to perform the second and third task.
Resumo:
Freeways are divided roadways designed to facilitate the uninterrupted movement of motor vehicles. However, many freeways now experience demand flows in excess of capacity, leading to recurrent congestion. The Highway Capacity Manual (TRB, 1994) uses empirical macroscopic relationships between speed, flow and density to quantify freeway operations and performance. Capacity may be predicted as the maximum uncongested flow achievable. Although they are effective tools for design and analysis, macroscopic models lack an understanding of the nature of processes taking place in the system. Szwed and Smith (1972, 1974) and Makigami and Matsuo (1990) have shown that microscopic modelling is also applicable to freeway operations. Such models facilitate an understanding of the processes whilst providing for the assessment of performance, through measures of capacity and delay. However, these models are limited to only a few circumstances. The aim of this study was to produce more comprehensive and practical microscopic models. These models were required to accurately portray the mechanisms of freeway operations at the specific locations under consideration. The models needed to be able to be calibrated using data acquired at these locations. The output of the models needed to be able to be validated with data acquired at these sites. Therefore, the outputs should be truly descriptive of the performance of the facility. A theoretical basis needed to underlie the form of these models, rather than empiricism, which is the case for the macroscopic models currently used. And the models needed to be adaptable to variable operating conditions, so that they may be applied, where possible, to other similar systems and facilities. It was not possible to produce a stand-alone model which is applicable to all facilities and locations, in this single study, however the scene has been set for the application of the models to a much broader range of operating conditions. Opportunities for further development of the models were identified, and procedures provided for the calibration and validation of the models to a wide range of conditions. The models developed, do however, have limitations in their applicability. Only uncongested operations were studied and represented. Driver behaviour in Brisbane was applied to the models. Different mechanisms are likely in other locations due to variability in road rules and driving cultures. Not all manoeuvres evident were modelled. Some unusual manoeuvres were considered unwarranted to model. However the models developed contain the principal processes of freeway operations, merging and lane changing. Gap acceptance theory was applied to these critical operations to assess freeway performance. Gap acceptance theory was found to be applicable to merging, however the major stream, the kerb lane traffic, exercises only a limited priority over the minor stream, the on-ramp traffic. Theory was established to account for this activity. Kerb lane drivers were also found to change to the median lane where possible, to assist coincident mergers. The net limited priority model accounts for this by predicting a reduced major stream flow rate, which excludes lane changers. Cowan's M3 model as calibrated for both streams. On-ramp and total upstream flow are required as input. Relationships between proportion of headways greater than 1 s and flow differed for on-ramps where traffic leaves signalised intersections and unsignalised intersections. Constant departure onramp metering was also modelled. Minimum follow-on times of 1 to 1.2 s were calibrated. Critical gaps were shown to lie between the minimum follow-on time, and the sum of the minimum follow-on time and the 1 s minimum headway. Limited priority capacity and other boundary relationships were established by Troutbeck (1995). The minimum average minor stream delay and corresponding proportion of drivers delayed were quantified theoretically in this study. A simulation model was constructed to predict intermediate minor and major stream delays across all minor and major stream flows. Pseudo-empirical relationships were established to predict average delays. Major stream average delays are limited to 0.5 s, insignificant compared with minor stream delay, which reach infinity at capacity. Minor stream delays were shown to be less when unsignalised intersections are located upstream of on-ramps than signalised intersections, and less still when ramp metering is installed. Smaller delays correspond to improved merge area performance. A more tangible performance measure, the distribution of distances required to merge, was established by including design speeds. This distribution can be measured to validate the model. Merging probabilities can be predicted for given taper lengths, a most useful performance measure. This model was also shown to be applicable to lane changing. Tolerable limits to merging probabilities require calibration. From these, practical capacities can be estimated. Further calibration is required of traffic inputs, critical gap and minimum follow-on time, for both merging and lane changing. A general relationship to predict proportion of drivers delayed requires development. These models can then be used to complement existing macroscopic models to assess performance, and provide further insight into the nature of operations.
Resumo:
Object identification and tracking have become critical for automated on-site construction safety assessment. The primary objective of this paper is to present the development of a testbed to analyze the impact of object identification and tracking errors caused by data collection devices and algorithms used for safety assessment. The testbed models workspaces for earthmoving operations and simulates safety-related violations, including speed limit violations, access violations to dangerous areas, and close proximity violations between heavy machinery. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of device and algorithm errors were investigated for safety planning purposes.
Resumo:
Current knowledge about the relationship between transport disadvantage and activity space size is limited to urban areas, and as a result, very little is known to date about this link in a rural context. In addition, although research has identified transport disadvantaged groups based on their size of activity spaces, these studies have, however, not empirically explained such differences and the result is often a poor identification of the problems facing disadvantaged groups. Research has shown that transport disadvantage varies over time. The static nature of analysis using the activity space concept in previous research studies has lacked the ability to identify transport disadvantage in time. Activity space is a dynamic concept; and therefore possesses a great potential in capturing temporal variations in behaviour and access opportunities. This research derives measures of the size and fullness of activity spaces for 157 individuals for weekdays, weekends, and for a week using weekly activity-travel diary data from three case study areas located in rural Northern Ireland. Four focus groups were also conducted in order to triangulate the quantitative findings and to explain the differences between different socio-spatial groups. The findings of this research show that despite having a smaller sized activity space, individuals were not disadvantaged because they were able to access their required activities locally. Car-ownership was found to be an important life line in rural areas. Temporal disaggregation of the data reveals that this is true only on weekends due to a lack of public transport services. In addition, despite activity spaces being at a similar size, the fullness of activity spaces of low-income individuals was found to be significantly lower compared to their high-income counterparts. Focus group data shows that financial constraint, poor connections both between public transport services and between transport routes and opportunities forced individuals to participate in activities located along the main transport corridors.
Resumo:
This report provides an evaluation of the Capalaba Youth Space.The evaluation included elements of process and impact evaluation and used a participatory action research approach informed by engagement processes, focus groups, a community survey, interviews and secondary analysis of existing data.
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
The traditional Vector Space Model (VSM) is not able to represent both the structure and the content of XML documents. This paper introduces a novel method of representing XML documents in a Tensor Space Model (TSM) and then utilizing it for clustering. Empirical analysis shows that the proposed method is scalable for large-sized datasets; as well, the factorized matrices produced from the proposed method help to improve the quality of clusters through the enriched document representation of both structure and content information.
Resumo:
Regardless of technology benefits, safety planners still face difficulties explaining errors related to the use of different technologies and evaluating how the errors impact the performance of safety decision making. This paper presents a preliminary error impact analysis testbed to model object identification and tracking errors caused by image-based devices and algorithms and to analyze the impact of the errors for spatial safety assessment of earthmoving and surface mining activities. More specifically, this research designed a testbed to model workspaces for earthmoving operations, to simulate safety-related violations, and to apply different object identification and tracking errors on the data collected and processed for spatial safety assessment. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of the errors were investigated for the safety planning purpose.