130 resultados para SI units
Resumo:
Multifunctional bioactive materials with the ability to stimulate osteogenesis and angiogenesis of stem cells play an important role in the regeneration of bone defects. However, how to develop such biomaterials remains a significant challenge. In this study, we prepared mesoporous silica nanospheres (MSNs) with uniform sphere size (∼90 nm) and mesopores (∼2.7 nm), which could release silicon ions (Si) to stimulate the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) via activating their ALP activity, bone-related gene and protein (OCN, RUNX2 and OPN) expression. Hypoxia-inducing therapeutic drug, dimethyloxaloylglycine (DMOG), was effectively loaded in the mesopores of MSNs (D-MSNs). The sustained release of DMOG from D-MSNs could stabilize HIF-1α and further stimulated the angiogenic differentiation of hBMSCs as indicated by the enhanced VEGF secretion and protein expression. Our study revealed that D-MSNs could combine the stimulatory effect on both osteogenic and angiogenic activity of hBMSCs. The potential mechanism of D-MSN-stimulated osteogenesis and angiogenesis was further elucidated by the supplementation of cell culture medium with pure Si ions and DMOG. Considering the easy handling characteristics of nanospheres, the prepared D-MSNs may be applied in the forms of injectable spheres for minimally invasive surgery, or MSNs/polymer composite scaffolds for bone defect repair. The concept of delivering both stimulatory ions and functional drugs may offer a new strategy to construct a multifunctional biomaterial system for bone tissue regeneration.
Resumo:
The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)⋅H2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm−1 and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm−1. A very sharp band is observed at 3668 cm−1 and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm−1 are assigned to water stretching vibrations.
Resumo:
Background: This article describes infection prevention and control professionals’ (ICPs’) staffing levels, patient outcomes, and costs associated with the provision of infection prevention and control services in Australian hospitals. A secondary objective was to determine the priorities for infection control units. Methods: A cross-sectional study design was used. Infection control units in Australian public and private hospitals completed a Web-based anonymous survey. Data collected included details about the respondent; hospital demographics; details and services of the infection control unit; and a description of infection prevention and control-related outputs, patient outcomes, and infection control priorities. Results: Forty-nine surveys were undertaken, accounting for 152 Australian hospitals. The mean number of ICPs was 0.66 per 100 overnight beds (95% confidence interval, 0.55-0.77). Privately funded hospitals have significantly fewer ICPs per 100 overnight beds compared with publicly funded hospitals (P < .01). Staffing costs for nursing staff in infection control units in this study totaled $16,364,392 (mean, $380,566). Infection control units managing smaller hospitals (<270 beds) identified the need for increased access to infectious diseases or microbiology support. Conclusion: This study provides valuable information to support future decisions by funders, hospital administrators, and ICPs on service delivery models for infection prevention and control. Further, it is the first to provide estimates of the resourcing and cost of staffing infection control in hospitals at a national level. Copyright
Resumo:
The mineral lamprophyllite is fundamentally a silicate based upon tetrahedral siloxane units with extensive substitution in the formula. Lamprophyllite is a complex group of sorosilicates with general chemical formula given as A2B4C2Si2O7(X)4, where the site A can be occupied by strontium, barium, sodium, and potassium; the B site is occupied by sodium, titanium, iron, manganese, magnesium, and calcium. The site C is mainly occupied by titanium or ferric iron and X includes the anions fluoride, hydroxyl, and oxide. Chemical composition shows a homogeneous phase, composed of Si, Na, Ti, and Fe. This complexity of formula is reflected in the complexity of both the Raman and infrared spectra. The Raman spectrum is characterized by intense bands at 918 and 940 cm−1. Other intense Raman bands are found at 576, 671, and 707 cm−1. These bands are assigned to the stretching and bending modes of the tetrahedral siloxane units.
Resumo:
Background Internationally the stroke unit is recognised as the evidence-based model for patient management, although clarity about the effective components of stroke units is lacking. Whilst skilled nursing care has been proposed as one component, the theoretical and empirical basis for stroke nursing is limited. We attempted to explore the organisational context of stroke unit nursing, to determine those features that staff perceived to be important in facilitating high quality care. Design A case study approach was used, that included interviews with nurses and members of the multidisciplinary teams in two Canadian acute stroke units. A total of 20 interviews were completed, transcribed and analysed thematically using the Framework Approach. Trustworthiness was established through the review of themes and their interpretation by members of the stroke units. Findings Nine themes that comprised an organisational context that supported the delivery of high quality nursing care in acute stroke units were identified, and provide a framework for organisational development. The study highlighted the importance of an overarching service model to guide the organisation of care and the development of specialist and advanced nursing roles. Whilst multidisciplinary working appears to be a key component of stroke unit nursing, various organisational challenges to its successful implementation were highlighted. In particular the consequence of differences in the therapeutic approach of nurses and therapy staff needs to be explored in greater depth. Successful teamwork appears to depend on opportunities for the development of relationships between team members as much as the use of formal communication systems and structures. A co-ordinated approach to education and training, clinical leadership, a commitment to research, and opportunities for role and practice development also appear to be key organisational features of stroke unit nursing. Recommendations for the development of stroke nursing leadership and future research into teamwork in stroke settings are made.
Resumo:
This thesis is a step forward in understanding the growth of graphene, a single layer of carbon atoms, by annealing Silicon Carbide (SiC) thin films in Ultra High Vacuum. The research lead to the discovery that the details of the transition from SiC to graphene, providing, for the first time, atomic resolution images of the different stages of the transformation and a model of the growth. The epitaxial growth of graphene developed by this study is a cost effective procedure to obtain this material directly on Si chips, a breakthrough for the future electronic industry.
Resumo:
- Background Falls are the most frequent adverse events that are reported in hospitals. We examined the effectiveness of individualised falls-prevention education for patients, supported by training and feedback for staff, delivered as a ward-level programme. - Methods Eight rehabilitation units in general hospitals in Australia participated in this stepped-wedge, cluster-randomised study, undertaken during a 50 week period. Units were randomly assigned to intervention or control groups by use of computer-generated, random allocation sequences. We included patients admitted to the unit during the study with a Mini-Mental State Examination (MMSE) score of more than 23/30 to receive individualised education that was based on principles of changes in health behaviour from a trained health professional, in addition to usual care. We provided information about patients' goals, feedback about the ward environment, and perceived barriers to engagement in falls-prevention strategies to staff who were trained to support the uptake of strategies by patients. The coprimary outcome measures were patient rate of falls per 1000 patient-days and the proportion of patients who were fallers. All analyses were by intention to treat. This trial is registered with the Australian New Zealand Clinical Trials registry, number ACTRN12612000877886). - Findings Between Jan 13, and Dec 27, 2013, 3606 patients were admitted to the eight units (n=1983 control period; n=1623 intervention period). There were fewer falls (n=196, 7·80/1000 patient-days vs n=380, 13·78/1000 patient-days, adjusted rate ratio 0·60 [robust 95% CI 0·42–0·94], p=0·003), injurious falls (n=66, 2·63/1000 patient-days vs 131, 4·75/1000 patient-days, 0·65 [robust 95% CI 0·42–0·88], p=0·006), and fallers (n=136 [8·38%] vs n=248 [12·51%] adjusted odds ratio 0·55 [robust 95% CI 0·38 to 0·81], p=0·003) in the intervention compared with the control group. There was no significant difference in length of stay (intervention median 11 days [IQR 7–19], control 10 days [6–18]). - Interpretation Individualised patient education programmes combined with training and feedback to staff added to usual care reduces the rates of falls and injurious falls in older patients in rehabilitation hospital-units.
Resumo:
At a campus in a low socioeconomic (SES) area, our University allows enrolled nurses entry into the second year of a Bachelor of Nursing, but attrition is high. Using the factors, described by Yorke and Thomas (2003) to have a positive impact on the attrition of low SES students, we developed strategies to prepare the enrolled nurses for the pharmacology and bioscience units of a nursing degree with the aim of reducing their attrition. As a strategy, the introduction of review lectures of anatomy, physiology and microbiology, was associated with significantly reduced attrition rates. The subsequent introduction of a formative website activity of some basic concepts in bioscience and pharmacology, and a workshop addressing study skills and online resources, were associated with a further reduction in attrition rates of enrolled nursing students in a Bachelor of Nursing.
Resumo:
Studies of Bi heteroepitaxy on Si(001) have shown that lines grow to lengths of up to 500nm if the substrate is heated to above the Bi desorption temperature (500°C) during or after Bi deposition. Unlike many other nanoline systems, the lines formed by this nonequilibrium growth process have no detectable width dispersion. Although much attention has been given to the atomic geometery of the line, in this paper, we focus on how the lines can be used to create a majority 2×1 domain orientation. It is demonstrated that the Bi lines can be used to produce a single-domain orientation on Si(001) if the lines are grown on Si(001) surfaces with a regular distribution of single height steps. This is a compelling example of how a nanoscale motif can be used to modify mesoscopic surface structure on Si(001).
Resumo:
The equilibrium geometry, electronic structure and energetic stability of Bi nanolines on clean and hydrogenated Si(001) surfaces have been examined by means of ab initio total energy calculations and scanning tunnelling microscopy. For the Bi nanolines on a clean Si surface the two most plausible structural models, the Miki or M model (Miki et al 1999 Phys. Rev. B 59 14868) and the Haiku or H model (Owen et al 2002 Phys. Rev. Lett. 88 226104), have been examined in detail. The results of the total energy calculations support the stability of the H model over the M model, in agreement with previous theoretical results. For Bi nanolines on the hydrogenated Si(001) surface, we find that an atomic configuration derived from the H model is also more stable than an atomic configuration derived from the M model. However, the energetically less stable (M) model exhibits better agreement with experimental measurements for equilibrium geometry. The electronic structures of the H and M models are very similar. Both models exhibit a semiconducting character, with the highest occupied Bi-derived bands lying at ~0.5 eV below the valence band maximum. Simulated and experimental STM images confirm that at a low negative bias the Bi lines exhibit an 'antiwire' property for both structural models.
Resumo:
A study of the Bi nanoline geometry on Si(0 0 1) has been performed using a combination of ab initio theoretical technique and scanning tunnelling microscopy (STM). Our calculations demonstrate decisively that the recently proposed Haiku geometry is a lower energy configuration than any of the previously proposed line geometries. Furthermore, we have made comparisons between STM constant-current topographs of the lines and Tersoff–Haman STM simulations. Although the Haiku and the Miki geometries both reproduce the main features of the constant-current topographs, the simulated STM images of the Miki geometry have a dark stripe between the dimer rows that does not correspond well with experiment.
Resumo:
The authors combine nanostenciling and pulsed laser deposition to patterngermanium(Ge)nanostructures into desired architectures. They have analyzed the evolution of the Ge morphology with coverage. Following the formation of a wetting layer within each area defined by the stencil’s apertures, Gegrowth becomes three dimensional and the size and number of Ge nanocrystals evolve with coverage. Micro-Raman spectroscopy shows that the deposits are crystalline and epitaxial. This approach is promising for the parallel patterning of semiconductor nanostructures for optoelectronic applications.