352 resultados para Residential migrations
Resumo:
Dementia is an irreversible and incurable syndrome that leads to progressive impairment of cognitive functions and behavioural and psychological symptoms such as agitation, depression and psychosis. Appropriate environmental conditions can help delay its onset and progression, and indoor environmental (IE) factors have a major impact. However, there is no firm understanding of the full range of relevant IE factors and their impact levels. This paper describes a preliminary study to investigate the effects of IE on Hong Kong residential care homes (RCH) dementia residents. This involved six purposively selected focus groups, each comprising the main stakeholders of the dementia residents’ caregivers, RCH staff and/or registered nurses, and architects. Using the Critical Incident Technique, the main context and experiences of behavioural problems of dementia residents caused by IE were explored and the key causal RCH IE quality factors identified, together with the associated responses and stress levels involved. The findings indicate that the acoustic environment, lighting and thermal environment are the most important influencing factors. Many of the remedies provided by the focus groups are quite simple to carry out and are summarised in the form of recommendations to current RCHs providers and users. The knowledge acquired in this initial study will help enrich the knowledge of IE design for dementiaspecific residential facilities. It also provides some preliminary insights for healthcare policymakers and practitioners in the building design/facilities management and dementia-care sectors into the IE factors contributing to a more comfortable, healthy and sustainable RCH living environment in Hong Kong.
Resumo:
Price based technique is one way to handle increase in peak demand and deal with voltage violations in residential distribution systems. This paper proposes an improved real time pricing scheme for residential customers with demand response option. Smart meters and in-home display units are used to broadcast the price and appropriate load adjustment signals. Customers are given an opportunity to respond to the signals and adjust the loads. This scheme helps distribution companies to deal with overloading problems and voltage issues in a more efficient way. Also, variations in wholesale electricity prices are passed on to electricity customers to take collective measure to reduce network peak demand. It is ensured that both customers and utility are benefitted by this scheme.
Resumo:
This paper reports on a study which explored the views and attitudes of family members towards the sexual expression of residents with dementia in residential aged care facilities in two states in Australia. Recruitment was challenging and only seven family members agreed to an interview on this topic. Data were analysed using a constant comparative method. Family were generally supportive of residents’ rights to sexual expression, but only some types of behaviours were approved of. There was an acknowledgement that responding to residents’ sexuality was difficult for staff and many families believed that they should be kept informed of their relative’s sexual behaviours and moreover be involved in decision making about it. Findings suggest the need for family education and a larger study to better understand the views and motivations of family carers and how these might impact on the sexual expression of the older person with dementia living in residential aged care.
Resumo:
Plug-in electric vehicles will soon be connected to residential distribution networks in high quantities and will add to already overburdened residential feeders. However, as battery technology improves, plug-in electric vehicles will also be able to support networks as small distributed generation units by transferring the energy stored in their battery into the grid. Even though the increase in the plug-in electric vehicle connection is gradual, their connection points and charging/discharging levels are random. Therefore, such single-phase bidirectional power flows can have an adverse effect on the voltage unbalance of a three-phase distribution network. In this article, a voltage unbalance sensitivity analysis based on charging/discharging levels and the connection point of plug-in electric vehicles in a residential low-voltage distribution network is presented. Due to the many uncertainties in plug-in electric vehicle ratings and connection points and the network load, a Monte Carlo-based stochastic analysis is developed to predict voltage unbalance in the network in the presence of plug-in electric vehicles. A failure index is introduced to demonstrate the probability of non-standard voltage unbalance in the network due to plug-in electric vehicles.
Resumo:
Voltage unbalance is a major power quality problem in low voltage residential feeders due to the random location and rating of single-phase rooftop photovoltaic cells (PV). In this paper, two different improvement methods based on the application of series (DVR) and parallel (DSTATCOM) custom power devices are investigated to improve the voltage unbalance problem in these feeders. First, based on the load flow analysis carried out in MATLAB, the effectiveness of these two custom power devices is studied vis-à-vis the voltage unbalance reduction in urban and semi-urban/rural feeders containing rooftop PVs. Their effectiveness is studied from the installation location and rating points of view. Later, a Monte Carlo based stochastic analysis is carried out to investigate their efficacy for different uncertainties of load and PV rating and location in the network. After the numerical analyses, a converter topology and control algorithm is proposed for the DSTATCOM and DVR for balancing the network voltage at their point of common coupling. A state feedback control, based on pole-shift technique, is developed to regulate the voltage in the output of the DSTATCOM and DVR converters such that the voltage balancing is achieved in the network. The dynamic feasibility of voltage unbalance and profile improvement in LV feeders, by the proposed structure and control algorithm for the DSTATCOM and DVR, is verified through detailed PSCAD/EMTDC simulations.
Resumo:
Development of design guides to estimate the difference in speech interference level due to road traffic noise between a reference position and balcony position or façade position is explored. A previously established and validated theoretical model incorporating direct, specular and diffuse reflection paths is used to create a database of results across a large number of scenarios. Nine balcony types with variable acoustic treatments are assessed to provide acoustic design guidance on optimised selection of balcony acoustic treatments based on location and street type. In total, the results database contains 9720 scenarios on which multivariate linear regression is conducted in order to derive an appropriate design guide equation. The best fit regression derived is a multivariable linear equation including modified exponential equations on each of nine deciding variables, (1) diffraction path difference, (2) ratio of total specular energy to direct energy, (3) distance loss between reference position and receiver position, (4) distance from source to balcony façade, (5) height of balcony floor above street, (6) balcony depth, (7) height of opposite buildings, (8) diffusion coefficient of buildings, and; (9) balcony average absorption. Overall, the regression correlation coefficient, R2, is 0.89 with 95% confidence standard error of ±3.4 dB.
Resumo:
This paper proposes a reward based demand response algorithm for residential customers to shave network peaks. Customer survey information is used to calculate various criteria indices reflecting their priority and flexibility. Criteria indices and sensitivity based house ranking is used for appropriate load selection in the feeder for demand response. Customer Rewards (CR) are paid based on load shift and voltage improvement due to load adjustment. The proposed algorithm can be deployed in residential distribution networks using a two-level hierarchical control scheme. Realistic residential load model consisting of non-controllable and controllable appliances is considered in this study. The effectiveness of the proposed demand response scheme on the annual load growth of the feeder is also investigated. Simulation results show that reduced peak demand, improved network voltage performance, and customer satisfaction can be achieved.
Resumo:
Increasing penetration of photovoltaic (PV) as well as increasing peak load demand has resulted in poor voltage profile for some residential distribution networks. This paper proposes coordinated use of PV and Battery Energy Storage (BES) to address voltage rise and/or dip problems. The reactive capability of PV inverter combined with droop based BES system is evaluated for rural and urban scenarios (having different R/X ratios). Results show that reactive compensation from PV inverters alone is sufficient to maintain acceptable voltage profile in an urban scenario (low resistance feeder), whereas, coordinated PV and BES support is required for the rural scenario (high resistance feeder). Constant as well as variable droop based BES schemes are analyzed. The required BES sizing and associated cost to maintain the acceptable voltage profile under both schemes is presented. Uncertainties in PV generation and load are considered, with probabilistic estimation of PV generation and randomness in load modeled to characterize the effective utilization of BES. Actual PV generation data and distribution system network data is used to verify the efficacy of the proposed method.
Resumo:
BACKGROUND: Variations in 'slope' (how steep or flat the ground is) may be good for health. As walking up hills is a physiologically vigorous physical activity and can contribute to weight control, greater neighbourhood slopes may provide a protective barrier to weight gain, and help prevent Type 2 diabetes onset. We explored whether living in 'hilly' neighbourhoods was associated with diabetes prevalence among the Australian adult population. METHODS: Participants ([greater than or equal to]25years; n=11,406) who completed the Western Australian Health and Wellbeing Surveillance System Survey (2003-2009) were asked whether or not they had medically-diagnosed diabetes. Geographic Information Systems (GIS) software was used to calculate a neighbourhood mean slope score, and other built environment measures at 1600m around each participant's home. Logistic regression models were used to predict the odds of self-reported diabetes after progressive adjustment for individual measures (i.e., age, sex), socioeconomic status (i.e., education, income), built environment, destinations, nutrition, and amount of walking. RESULTS: After full adjustment, the odds of self-reported diabetes was 0.72 (95% CI 0.55-0.95) and 0.52 (95% CI 0.39-0.69) for adults living in neighbourhoods with moderate and higher levels of slope, respectively, compared with adults living in neighbourhoods with the lowest levels of slope. The odds of having diabetes was 13% lower (odds ratio 0.87; 95% CI 0.80-0.94) for each increase of one percent in mean slope. CONCLUSIONS: Living in a hilly neighbourhood may be protective of diabetes onset or this finding is spurious. Nevertheless, the results are promising and have implications for future research and the practice of flattening land in new housing developments.
Resumo:
Electricity network investment and asset management require accurate estimation of future demand in energy consumption within specified service areas. For this purpose, simple models are typically developed to predict future trends in electricity consumption using various methods and assumptions. This paper presents a statistical model to predict electricity consumption in the residential sector at the Census Collection District (CCD) level over the state of New South Wales, Australia, based on spatial building and household characteristics. Residential household demographic and building data from the Australian Bureau of Statistics (ABS) and actual electricity consumption data from electricity companies are merged for 74 % of the 12,000 CCDs in the state. Eighty percent of the merged dataset is randomly set aside to establish the model using regression analysis, and the remaining 20 % is used to independently test the accuracy of model prediction against actual consumption. In 90 % of the cases, the predicted consumption is shown to be within 5 kWh per dwelling per day from actual values, with an overall state accuracy of -1.15 %. Given a future scenario with a shift in climate zone and a growth in population, the model is used to identify the geographical or service areas that are most likely to have increased electricity consumption. Such geographical representation can be of great benefit when assessing alternatives to the centralised generation of energy; having such a model gives a quantifiable method to selecting the 'most' appropriate system when a review or upgrade of the network infrastructure is required.
Resumo:
This paper proposes the use of a common DC link in residential buildings to allow customers to inject their surplus power that otherwise would be limited due to AC power quality violation. The surplus power can easily be transferred to other phases and feeders through common DC link in order to maintain the balance between generated power and load. PSCAD-EMTDC platform is used to simulate and study the proposed approach. This paper suggests that this structure can be a pathway to the future DC power systems.
Resumo:
Low voltage distribution feeders with large numbers of single phase residential loads experience severe current unbalance that often causes voltage unbalance problems. The addition of intermittent generation and new loads in the form of roof top photovoltaic generation and electric vehicles makes these problems even more acute. In this paper, an intelligent dynamic residential load transfer scheme is proposed. Residential loads can be transferred from one phase to another phase to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch with three-phase input and single-phase output connection. The main controller, installed at the transformer will observe the power consumption in each load and determine which house(s) should be transferred from one phase to another in order to keep the voltage unbalance in the feeder at a minimum. The efficacy of the proposed load transfer scheme is verified through MATLAB and PSCAD/EMTDC simulations.
Resumo:
Solutions to remedy the voltage disturbances have been mostly suggested only for industrial customers. However, not much research has been done on the impact of the voltage problems on residential facilities. This paper proposes a new method to reduce the effect of voltage dip and swell in smart grids equipped by communication systems. To reach this purpose, a voltage source inverter and the corresponding control system are employed. The behavior of a power system during voltage dip and swell are analyzed. The results demonstrate reasonable improvement in terms of voltage dip and swell mitigation. All simulations are implemented in MATLAB/Simulink environment.
Resumo:
In order to dynamically reduce voltage unbalance along a low voltage distribution feeder, a smart residential load transfer system is discussed. In this scheme, residential loads can be transferred from one phase to another to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch and a controller. The master controller, installed at the transformer, observes the power consumption in each house and will determine which house(s) should be transferred from an initially connected phase to another in order to keep the voltage unbalance minimum. The performance of the smart load transfer scheme is demonstrated by simulations.
Resumo:
A novel intelligent online demand management system is discussed in this chapter for peak load management in low voltage residential distribution networks based on the smart grid concept. The discussed system also regulates the network voltage, balances the power in three phases and coordinates the energy storage within the network. This method uses low cost controllers, with two-way communication interfaces, installed in costumers’ premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified by a MATLAB-based simulation which includes detailed modeling of residential loads and the network.