115 resultados para REGRESSION MODEL
Resumo:
Poor compliance with speed limits is a serious safety concern at roadworks. While considerable research has been undertaken worldwide to understand drivers’ speeding behaviour at roadworks and to identify treatments for improving compliance with speed limits, little is known about the speeding behaviour of drivers at Australian roadworks and how their compliance rates with speed limits could be improved. This paper presents findings from two Queensland studies targeted at 1) examining drivers’ speed profiles at three long-term roadwork sites, and 2) understanding the effectiveness of speed control treatments at roadworks. The first study analysed driver speeds at various locations in the sites using a Tobit regression model. Results show that the probability of speeding was higher for light vehicles and their followers, for leaders of platoons with larger front gaps, during late afternoon and early morning, when higher proportions of surrounding vehicles were speeding, and at the upstream of work areas. The second study provided a comprehensive understanding of the effectiveness of various speed control treatments used at roadworks by undertaking a critical review of the literature. Results showed that enforcement has the greatest effects on reducing speeds among all treatments, while the roadwork signage and information-related treatments have small to moderate effects on speed reduction. Findings from the studies have potential for designing programs to effectively improve speed limit compliance at Australian roadworks.
Resumo:
Identifying inequalities in air pollution levels across population groups can help address environmental justice concerns. We were interested in assessing these inequalities across major urban areas in Australia. We used a land-use regression model to predict ambient nitrogen dioxide (NO2) levels and sought the best socio-economic and population predictor variables. We used a generalised least squares model that accounted for spatial correlation in NO2 levels to examine the associations between the variables. We found that the best model included the index of economic resources (IER) score as a non-linear variable and the percentage of non-Indigenous persons as a linear variable. NO2 levels decreased with increasing IER scores (higher scores indicate less disadvantage) in almost all major urban areas, and NO2 also decreased slightly as the percentage of non-Indigenous persons increased. However, the magnitude of differences in NO2 levels was small and may not translate into substantive differences in health.
Resumo:
Atherosclerosis plaque rupture has been considered to be a mechanical failure of the thin fibrous cap, resulted from extreme plaque stress. Plaque stress was affected by many factors from morphological features to biological abnormalities. In this study, geometrical factors (curvedness, fibrous cap thickness) were studied on assessing plaque vulnerability in comparison with stress analysis results obtained by fluid structure interaction from 20 human carotid atherosclerosis plaques. The results show that plaque surface curvedness could contribute to extreme stress level, especially in plaque shoulder region. General plaque stress distribution could be predicted by fibrous cap thickness and curvedness with multi-regression model. With more features included in the regression model, plaque stress could be easily calculated and used to assess plaque vulnerability.
Resumo:
The export of sediments from coastal catchments can have detrimental impacts on estuaries and near shore reef ecosystems such as the Great Barrier Reef. Catchment management approaches aimed at reducing sediment loads require monitoring to evaluate their effectiveness in reducing loads over time. However, load estimation is not a trivial task due to the complex behaviour of constituents in natural streams, the variability of water flows and often a limited amount of data. Regression is commonly used for load estimation and provides a fundamental tool for trend estimation by standardising the other time specific covariates such as flow. This study investigates whether load estimates and resultant power to detect trends can be enhanced by (i) modelling the error structure so that temporal correlation can be better quantified, (ii) making use of predictive variables, and (iii) by identifying an efficient and feasible sampling strategy that may be used to reduce sampling error. To achieve this, we propose a new regression model that includes an innovative compounding errors model structure and uses two additional predictive variables (average discounted flow and turbidity). By combining this modelling approach with a new, regularly optimised, sampling strategy, which adds uniformity to the event sampling strategy, the predictive power was increased to 90%. Using the enhanced regression model proposed here, it was possible to detect a trend of 20% over 20 years. This result is in stark contrast to previous conclusions presented in the literature. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Submarine groundwater discharge (SGD) is an integral part of the hydrological cycle and represents an important aspect of land-ocean interactions. We used a numerical model to simulate flow and salt transport in a nearshore groundwater aquifer under varying wave conditions based on yearlong random wave data sets, including storm surge events. The results showed significant flow asymmetry with rapid response of influxes and retarded response of effluxes across the seabed to the irregular wave conditions. While a storm surge immediately intensified seawater influx to the aquifer, the subsequent return of intruded seawater to the sea, as part of an increased SGD, was gradual. Using functional data analysis, we revealed and quantified retarded, cumulative effects of past wave conditions on SGD including the fresh groundwater and recirculating seawater discharge components. The retardation was characterized well by a gamma distribution function regardless of wave conditions. The relationships between discharge rates and wave parameters were quantifiable by a regression model in a functional form independent of the actual irregular wave conditions. This statistical model provides a useful method for analyzing and predicting SGD from nearshore unconfined aquifers affected by random waves
Resumo:
The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.
Resumo:
Consider a general regression model with an arbitrary and unknown link function and a stochastic selection variable that determines whether the outcome variable is observable or missing. The paper proposes U-statistics that are based on kernel functions as estimators for the directions of the parameter vectors in the link function and the selection equation, and shows that these estimators are consistent and asymptotically normal.
Resumo:
- Objective We sought to assess the effect of long-term exposure to ambient air pollution on the prevalence of self-reported health outcomes in Australian women. - Design Cross-sectional study - Setting and participants The geocoded residential addresses of 26 991 women across 3 age cohorts in the Australian Longitudinal Study on Women's Health between 2006 and 2011 were linked to nitrogen dioxide (NO2) exposure estimates from a land-use regression model. Annual average NO2 concentrations and residential proximity to roads were used as proxies of exposure to ambient air pollution. - Outcome measures Self-reported disease presence for diabetes mellitus, heart disease, hypertension, stroke, asthma, chronic obstructive pulmonary disease and self-reported symptoms of allergies, breathing difficulties, chest pain and palpitations. - Methods Disease prevalence was modelled by population-averaged Poisson regression models estimated by generalised estimating equations. Associations between symptoms and ambient air pollution were modelled by multilevel mixed logistic regression. Spatial clustering was accounted for at the postcode level. - Results No associations were observed between any of the outcome and exposure variables considered at the 1% significance level after adjusting for known risk factors and confounders. - Conclusions Long-term exposure to ambient air pollution was not associated with self-reported disease prevalence in Australian women. The observed results may have been due to exposure and outcome misclassification, lack of power to detect weak associations or an actual absence of associations with self-reported outcomes at the relatively low annual average air pollution exposure levels across Australia.
Resumo:
Criminological theories of cross-national studies of homicide have underestimated the effects of quality governance of liberal democracy and region. Data sets from several sources are combined and a comprehensive model of homicide is proposed. Results of the spatial regression model, which controls for the effect of spatial autocorrelation, show that quality governance, human development, economic inequality, and ethnic heterogeneity are statistically significant in predicting homicide. In addition, regions of Latin America and non-Muslim Sub-Saharan Africa have significantly higher rates of homicides ceteris paribus while the effects of East Asian countries and Islamic societies are not statistically significant. These findings are consistent with the expectation of the new modernization and regional theories.
Resumo:
Introduction: Extreme heat events (both heat waves and extremely hot days) are increasing in frequency and duration globally and cause more deaths in Australia than any other extreme weather event. Numerous studies have demonstrated a link between extreme heat events and an increased risk of morbidity and death. In this study, the researchers sought to identify if extreme heat events in the Tasmanian population were associated with any changes in emergency department admissions to the Royal Hobart Hospital (RHH) for the period 2003-2010. Methods: Non-identifiable RHH emergency department data and climate data from the Australian Bureau of Meteorology were obtained for the period 2003-2010. Statistical analyses were conducted using the computer statistical computer software ‘R’ with a distributed lag non-linear model (DLNM) package used to fit a quassi-Poisson generalised linear regression model. Results: This study showed that RR of admission to RHH during 2003-2010 was significant over temperatures of 24 C with a lag effect lasting 12 days and main effect noted one day after the extreme heat event. Discussion: This study demonstrated that extreme heat events have a significant impact on public hospital admissions. Two limitations were identified: admissions data rather than presentations data were used and further analysis could be done to compare types of admissions and presentations between heat and non-heat events. Conclusion: With the impacts of climate change already being felt in Australia, public health organisations in Tasmania and the rest of Australia need to implement adaptation strategies to enhance resilience to protect the public from the adverse health effects of heat events and climate change.