118 resultados para Quad-Tree decomposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monte-Carlo Tree Search (MCTS) is a heuristic to search in large trees. We apply it to argumentative puzzles where MCTS pursues the best argumentation with respect to a set of arguments to be argued. To make our ideas as widely applicable as possible, we integrate MCTS to an abstract setting for argumentation where the content of arguments is left unspecified. Experimental results show the pertinence of this integration for learning argumentations by comparing it with a basic reinforcement learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although species of Syzygium are abundant components of the rainforests in Queensland and New South Wales, little is known about the anatomy of the Australian taxa. Here we describe the foliar anatomy and micromorphology of Syzygium floribundum (syn: Waterhousea floribunda) using standard protocols for scanning electron microscopy (SEM) and light microscopy. Syzygium floribundum possesses dorsiventral leaves with cyclo-staurocytic stomata, single epidermis, internal phloem, rhombus-shaped calcium oxalate crystals and complex-open midrib. In general, leaf anatomical and micromorphological characters are common with some species of the tribe Syzygieae. However, this particular combination of leaf characters has not been reported in a species of the genus. The anatomy of the species is typical of mesophytic taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is a step forward in discovering knowledge from databases of complex structure like tree or graph. Several data mining algorithms are developed based on a novel representation called Balanced Optimal Search for extracting implicit, unknown and potentially useful information like patterns, similarities and various relationships from tree data, which are also proved to be advantageous in analysing big data. This thesis focuses on analysing unordered tree data, which is robust to data inconsistency, irregularity and swift information changes, hence, in the era of big data it becomes a popular and widely used data model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental changes have put great pressure on biological systems leading to the rapid decline of biodiversity. To monitor this change and protect biodiversity, animal vocalizations have been widely explored by the aid of deploying acoustic sensors in the field. Consequently, large volumes of acoustic data are collected. However, traditional manual methods that require ecologists to physically visit sites to collect biodiversity data are both costly and time consuming. Therefore it is essential to develop new semi-automated and automated methods to identify species in automated audio recordings. In this study, a novel feature extraction method based on wavelet packet decomposition is proposed for frog call classification. After syllable segmentation, the advertisement call of each frog syllable is represented by a spectral peak track, from which track duration, dominant frequency and oscillation rate are calculated. Then, a k-means clustering algorithm is applied to the dominant frequency, and the centroids of clustering results are used to generate the frequency scale for wavelet packet decomposition (WPD). Next, a new feature set named adaptive frequency scaled wavelet packet decomposition sub-band cepstral coefficients is extracted by performing WPD on the windowed frog calls. Furthermore, the statistics of all feature vectors over each windowed signal are calculated for producing the final feature set. Finally, two well-known classifiers, a k-nearest neighbour classifier and a support vector machine classifier, are used for classification. In our experiments, we use two different datasets from Queensland, Australia (18 frog species from commercial recordings and field recordings of 8 frog species from James Cook University recordings). The weighted classification accuracy with our proposed method is 99.5% and 97.4% for 18 frog species and 8 frog species respectively, which outperforms all other comparable methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an effective classification method based on Support Vector Machines (SVM) in the context of activity recognition. Local features that capture both spatial and temporal information in activity videos have made significant progress recently. Efficient and effective features, feature representation and classification plays a crucial role in activity recognition. For classification, SVMs are popularly used because of their simplicity and efficiency; however the common multi-class SVM approaches applied suffer from limitations including having easily confused classes and been computationally inefficient. We propose using a binary tree SVM to address the shortcomings of multi-class SVMs in activity recognition. We proposed constructing a binary tree using Gaussian Mixture Models (GMM), where activities are repeatedly allocated to subnodes until every new created node contains only one activity. Then, for each internal node a separate SVM is learned to classify activities, which significantly reduces the training time and increases the speed of testing compared to popular the `one-against-the-rest' multi-class SVM classifier. Experiments carried out on the challenging and complex Hollywood dataset demonstrates comparable performance over the baseline bag-of-features method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides an empirical estimation of energy efficiency and other proximate factors that explain energy intensity in Australia for the period 1978-2009. The analysis is performed by decomposing the changes in energy intensity by means of energy efficiency, fuel mix and structural changes using sectoral and sub-sectoral levels of data. The results show that the driving forces behind the decrease in energy intensity in Australia are efficiency effect and sectoral composition effect, where the former is found to be more prominent than the latter. Moreover, the favourable impact of the composition effect has slowed consistently in recent years. A perfect positive association characterizes the relationship between energy intensity and carbon intensity in Australia. The decomposition results indicate that Australia needs to improve energy efficiency further to reduce energy intensity and carbon emissions. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in energy-related CO2 emissions aggregate intensity, total CO2 emissions and per-capita CO2 emissions in Australia are decomposed by using a Logarithmic Mean Divisia Index (LMDI) method for the period 1978-2010. Results indicate improvements in energy efficiency played a dominant role in the measured 17% reduction in CO2 emissions aggregate intensity in Australia over the period. Structural changes in the economy, such as changes in the relative importance of the services sector vis-à-vis manufacturing, have also played a major role in achieving this outcome. Results also suggest that, without these mitigating factors, income per capita and population effects could well have produced an increase in total emissions of more than 50% higher than actually occurred over the period. Perhaps most starkly, the results indicate that, without these mitigating factors, the growth in CO2 emissions per capita could have been over 150% higher than actually observed. Notwithstanding this, the study suggests that, for Australia to meet its Copenhagen commitment, the relative average per annum effectiveness of these mitigating factors during 2010-2020 probably needs to be almost three times what it was in the 2005-2010 period-a very daunting challenge indeed for Australia's policymakers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the asymmetry of changes in CO2 emissions over business cycle recessions and expansions using yearly data from 1949 and monthly data from 1973 for the United States (US). In addition, decomposition analysis is applied to investigate the relative roles of various proximate contributing factors to observed changes in total and per capita CO2 emissions and emissions intensity, over business cycle phases. The results suggest, inter alia, that aggregate emissions and emissions intensity reduce much faster in contractions than they increase in expansions. In addition, unlike the three previous expansions, in the most recent post-GFC US expansion, emissions per capita have continued to decline, and at a rate very similar to the rate of reduction in preceding contractions. This suggests the real possibility that the most recent contraction may have had an ongoing impact on the path of per capita emissions well beyond the immediate impact experienced during the contraction itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jarvis et al. (Research Articles, 12 December 2014, p. 1320) presented molecular clock analyses that suggested that most modern bird orders diverged just after the mass extinction event at the Cretaceous-Paleogene boundary (about 66 million years ago). We demonstrate that this conclusion results from the use of a single inappropriate maximum bound, which effectively precludes the Cretaceous diversification overwhelmingly supported by previous molecular studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian government has recently pledged a reduction in GHGs emissions of 26–28% below the 2005 level by 2030. How big is the challenge for the country to achieve this target in terms of its present emissions profile, recent historical trends, and the contributions to those trends from key proximate factors contributing to emissions? In this paper, we attempt a quantitative judgement of the challenge by using decomposition analysis. Based on the analysis it appears the announced target will be quite challenging to achieve if the average annual mitigating effects from economic restructuring, energy efficiency improvements and movement towards less emissions-intensive energy sources in evidence over 2002–2013 continued through to 2030; however, if the contribution from these mitigating sources in evidence over 2006–2013 can be sustained, achievement of the target will be much less challenging. The challenge for government then will be to provide a policy framework to ensure the more pronounced beneficial impacts of the mitigating factors evidenced during 2006–2013 can be maintained over the years to 2030.