283 resultados para Pulmonary function
Resumo:
BACKGROUND: The efficacy of nutritional support in the management of malnutrition in chronic obstructive pulmonary disease (COPD) is controversial. Previous meta-analyses, based on only cross-sectional analysis at the end of intervention trials, found no evidence of improved outcomes. OBJECTIVE: The objective was to conduct a meta-analysis of randomized controlled trials (RCTs) to clarify the efficacy of nutritional support in improving intake, anthropometric measures, and grip strength in stable COPD. DESIGN: Literature databases were searched to identify RCTs comparing nutritional support with controls in stable COPD. RESULTS: Thirteen RCTs (n = 439) of nutritional support [dietary advice (1 RCT), oral nutritional supplements (ONS; 11 RCTs), and enteral tube feeding (1 RCT)] with a control comparison were identified. An analysis of the changes induced by nutritional support and those obtained only at the end of the intervention showed significantly greater increases in mean total protein and energy intakes with nutritional support of 14.8 g and 236 kcal daily. Meta-analyses also showed greater mean (±SE) improvements in favor of nutritional support for body weight (1.94 ± 0.26 kg, P < 0.001; 11 studies, n = 308) and grip strength (5.3%, P < 0.050; 4 studies, n = 156), which was not shown by ANOVA at the end of the intervention, largely because of bias associated with baseline imbalance between groups. CONCLUSION: This systematic review and meta-analysis showed that nutritional support, mainly in the form of ONS, improves total intake, anthropometric measures, and grip strength in COPD. These results contrast with the results of previous analyses that were based on only cross-sectional measures at the end of intervention trials.
Resumo:
Introduction: Smoking status in outpatients with chronic obstructive pulmonary disease (COPD) has been associated with a low body mass index (BMI) and reduced mid-arm muscle circumference (Cochrane & Afolabi, 2004). Individuals with COPD identified as malnourished have also been found to be twice as likely to die within 1 year compared to non-malnourished patients (Collins et al., 2010). Although malnutrition is both preventable and treatable, it is not clear what influence current smoking status, another modifiable risk factor, has on malnutrition risk. The current study aimed to establish the influence of smoking status on malnutrition risk and 1-year mortality in outpatients with COPD. Methods: A prospective nutritional screening survey was carried out between July 2008 and May 2009 at a large teaching hospital (Southampton General Hospital) and a smaller community hospital within Hampshire (Lymington New Forest Hospital). In total, 424 outpatients with a diagnosis of COPD were routinely screened using the ‘Malnutrition Universal Screening Tool’, ‘MUST’ (Elia, 2003); 222 males, 202 females; mean (SD) age 73 (9.9) years; mean (SD) BMI 25.9 (6.4) kg m−2. Smoking status on the date of screening was obtained for 401 of the outpatients. Severity of COPD was assessed using the GOLD criteria, and social deprivation determined using the Index of Multiple Deprivation (Nobel et al., 2008). Results: The overall prevalence of malnutrition (medium + high risk) was 22%, with 32% of current smokers at risk (who accounted for 19% of the total COPD population). In comparison, 19% of nonsmokers and ex-smokers were likely to be malnourished [odds ratio, 1.965; 95% confidence interval (CI), 1.133–3.394; P = 0.015]. Smoking status remained an independent risk factor for malnutrition even after adjustment for age, social deprivation and disease-severity (odds ratio, 2.048; 95% CI, 1.085–3.866; P = 0.027) using binary logistic regression. After adjusting for age, disease severity, social deprivation, smoking status, malnutrition remained a significant predictor of 1-year mortality [odds ratio (medium + high risk versus low risk), 2.161; 95% CI, 1.021–4.573; P = 0.044], whereas smoking status did not (odds ratio for smokers versus ex-smokers + nonsmokers was 1.968; 95% CI, 0.788–4.913; P = 0.147). Discussion: This study highlights the potential importance of combined nutritional support and smoking cessation in order to treat malnutrition. The close association between smoking status and malnutrition risk in COPD suggests that smoking is an important consideration in the nutritional management of malnourished COPD outpatients. Conclusions: Smoking status in COPD outpatients is a significant independent risk factor for malnutrition and a weaker (nonsignificant) predictor of 1-year mortality. Malnutrition significantly predicted 1 year mortality. References: Cochrane, W.J. & Afolabi, O.A. (2004) Investigation into the nutritional status, dietary intake and smoking habits of patients with chronic obstructive pulmonary disease. J. Hum. Nutr. Diet.17, 3–11. Collins, P.F., Stratton, R.J., Kurukulaaratchym R., Warwick, H. Cawood, A.L. & Elia, M. (2010) ‘MUST’ predicts 1-year survival in outpatients with chronic obstructive pulmonary disease. Clin. Nutr.5, 17. Elia, M. (Ed) (2003) The ‘MUST’ Report. BAPEN. http://www.bapen.org.uk (accessed on March 30 2011). Nobel, M., McLennan, D., Wilkinson, K., Whitworth, A. & Barnes, H. (2008) The English Indices of Deprivation 2007. http://www.communities.gov.uk (accessed on March 30 2011).
Resumo:
Deprivation is linked to increased incidence in a number of chronic diseases but its relationship to chronic obstructive pulmonary disease (COPD) is uncertain despite suggestions that the socioeconomic gradient seen in COPD is as great, if not greater, than any other disease (Prescott and Vestbo).1 There is also a need to take into account the confounding effects of malnutrition which have been shown to be independently linked to increased mortality (Collins et al).2 The current study investigated the influence of social deprivation on 1-year survival rates in COPD outpatients, independently of malnutrition. 424 outpatients with COPD were routinely screened for malnutrition risk using the ‘Malnutrition Universal Screening Tool’; ‘MUST’ (Elia),3 between July and May 2009; 222 males and 202 females; mean age 73 (SD 9.9) years; body mass index 25.8 (SD 6.3) kg/m2. Each individual's deprivation was calculated using the index of multiple deprivation (IMD) which was established according to the geographical location of each patient's address (postcode). IMD includes a number of indicators covering economic, housing and social issues (eg, health, education and employment) into a single deprivation score (Nobel et al).4 The lower the IMD score, the lower an individual's deprivation. The IMD was assigned to each outpatient at the time of screening and related to1-year mortality from the date screened. Outpatients who died within 1-year of screening were significantly more likely to reside within a deprived postcode (IMD 19.7±SD 13.1 vs 15.4±SD 10.7; p=0.023, OR 1.03, 95% CI 1.00 to 1.06) than those that did not die. Deprivation remained a significant independent risk factor for 1-year mortality even when adjusted for malnutrition as well as age, gender and disease severity (binary logistic regression; p=0.008, OR 1.04, 95% CI 1.04 to 1.07). Deprivation was not associated with disease-severity (p=0.906) or body mass index, kg/m2 (p=0.921) using ANOVA. This is the first study to show that deprivation, assessed using IMD, is associated with increased 1-year mortality in outpatients with COPD independently of malnutrition, age and disease severity. Deprivation should be considered in the targeted management of these patients.
Resumo:
Deprivation assessed using the Index of Multiple Deprivation (IMD) has been shown to be an independent risk factor for both malnutrition and mortality in outpatients with chronic obstructive pulmonary disease (COPD) (Collins et al., 2010a, b). IMD consists of a range of different deprivation domains, although it is unclear which ones are most closely linked to malnutrition. The aim of the current study was to investigate whether the relationship between malnutrition and deprivation was a general one, affecting all domains in a consistent manner, or specific, affecting only certain domains.
Resumo:
Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterisation and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression and assess new therapies. This thesis evaluates novel corneal methods of assessing diabetic neuropathy. Over the past several years two new non-invasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy (CCM) allows quantification of corneal nerve parameters and non-contact corneal aesthesiometry (NCCA), the presumed functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and with automatic analysis paradigms developed, are suitable for clinical settings. Each has advantages and disadvantages over established techniques for assessing diabetic neuropathy. New information is presented regarding measurement bias of CCM images, and a unique sampling paradigm and associated accuracy determination method of combinations is described. A novel high-speed corneal nerve mapping procedure has been developed and application of this procedure in individuals with neuropathy has revealed regions of sub-basal nerve plexus that dictate further evaluation, as they appear to show earlier signs of damage than the central region of the cornea that has to date been examined. The discriminative capacity of corneal sensitivity measured by NCCA is revealed to have reasonable potential as a marker of diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.
Resumo:
Background We have previously demonstrated that human kidney proximal tubule epithelial cells (PTEC) are able to modulate autologous T and B lymphocyte responses. It is well established that dendritic cells (DC) are responsible for the initiation and direction of adaptive immune responses and that these cells occur in the renal interstitium in close apposition to PTEC under inflammatory disease settings. However, there is no information regarding the interaction of PTEC with DC in an autologous human context. Methods Human monocytes were differentiated into monocyte-derived DC (MoDC) in the absence or presence of primary autologous activated PTEC and matured with polyinosinic:polycytidylic acid [poly(I:C)], while purified, pre-formed myeloid blood DC (CD1c+ BDC) were cultured with autologous activated PTEC in the absence or presence of poly(I:C) stimulation. DC responses were monitored by surface antigen expression, cytokine secretion, antigen uptake capacity and allogeneic T-cell-stimulatory ability. Results The presence of autologous activated PTEC inhibited the differentiation of monocytes to MoDC. Furthermore, MoDC differentiated in the presence of PTEC displayed an immature surface phenotype, efficient phagocytic capacity and, upon poly(I:C) stimulation, secreted low levels of pro-inflammatory cytokine interleukin (IL)-12p70, high levels of anti-inflammatory cytokine IL-10 and induced weak Th1 responses. Similarly, pre-formed CD1c+ BDC matured in the presence of PTEC exhibited an immature tolerogenic surface phenotype, strong endocytic and phagocytic ability and stimulated significantly attenuated T-cell proliferative responses. Conclusions Our data suggest that activated PTEC regulate human autologous immunity via complex interactions with DC. The ability of PTEC to modulate autologous DC function has important implications for the dampening of pro-inflammatory immune responses within the tubulointerstitium in renal injuries. Further dissection of the mechanisms of PTEC modulation of autologous immune responses may offer targets for therapeutic intervention in renal medicine.
Resumo:
Nicotine addiction remains the leading cause of death and disease in developed and developing nations and a major cause of mortality around the world. Currently, nicotine replacement therapies (NRTs), bupropion, and varenicline are approved by the regulatory agencies as first-line treatments for nicotine addiction. Emerging evidence indicates that varenicline and bupropion have some therapeutic limitations for treating nicotine addiction with oral route of administration. Thus, continued investigation of innovative drug delivery for nicotine addiction remains a critical priority. This review will discuss some novel strategies and future directions for pulmonary drug delivery, an emerging route of administration for smoking cessation. It is anticipated that the advancement of knowledge on pulmonary drug delivery will provide better management for nicotine addiction and other addictive disorders.
Resumo:
Pulmonary drug delivery is the focus of much research and development because of its great potential to produce maximum therapeutic benefit. Among the available options the dry powder inhaler (DPI) is the preferred device for the treatment of an increasingly diverse number of diseases. However, as drug delivery from a DPI involves a complicated set of physical processes and the integration of drug formulations, device design and patient usage, the engineering development of this medical technology is proving to be a great challenge. Currently there is large range of devices that are either available on the market or under development, however, none exhibit superior clinical efficacy. A major concern is the inter- and intra-patient variability of the drug dosage delivered to the deep lungs. The extent of variability depends on the drug formulation, the device design and the patient’s inhalation profile. This article reviews recent advances in DPI technology and presents the key factors which motivate and constrain the successful engineering of a universal, patient-independent DPI that is capable of efficient, reliable and repeatable drug delivery. A strong emphasis is placed on the physical processes of drug powder aerosolisation, deagglomeration, and dispersion and on the engineering of formulations and inhalers that can optimise these processes.