117 resultados para Plate Digitization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The New Hebrides Island Arc, an intra-oceanic island chain in the southwest Pacific, is formed by subduction of the Indo-Australian Plate beneath the Pacific Plate. The southern end of the New Hebrides Island Arc is an ideal location to study the magmatic and tectonic interaction of an emerging island arc as this part of the island chain is less than 3 million years old. A tectonically complex island arc, it exhibits a change in relative subduction rate from ~12cm/yr to 6 cm/yr before transitioning to a left-lateral strike slip zone at its southern end. Two submarine volcanic fields, Gemini-Oscostar and Volsmar, occur at this transition from normal arc subduction to sinistral strike slip movement. Multi-beam bathymetry and dredge samples collected during the 2004 CoTroVE cruise onboard the RV Southern Surveyor help define the relationship between magmatism and tectonics, and the source for these two submarine volcanic fields. Gemini-Oscostar volcanic field (GOVF), dominated by northwest-oriented normal faults, has mature polygenetic stratovolcanoes with evidence for explosive subaqueous eruptions and homogeneous monogenetic scoria cones. Volsmar volcanic field (VVF), located 30 km south of GOVF, exhibits a conjugate set of northwest and eastwest-oriented normal faults, with two polygenetic stratovolcanoes and numerous monogenetic scoria cones. A deep water caldera provides evidence for explosive eruptions at 1500m below sea level in the VVF. Both volcanic fields are dominated by low-K island arc tholeiites and basaltic andesites with calcalkalic andesite and dacite being found only in the GOVF. Geochemical signatures of both volcanic fields continue the along-arc trend of decreasing K2O with both volcanic fields being similar to the New Hebrides central chain lavas. Lavas from both fields display a slight depletion in high field strength elements and heavy rare earth elements, and slight enrichments in large-ion lithophile elements and light rare earth elements with respect to N-MORB mantle. Sr and Nd isotope data correlate with heavy rare earth and high field strength element data to show that both fields are derived from depleted mantle. Pb isotopes define Pacific MORB mantle sources and are consistent with isotopic variation along the New Hebrides Island Arc. Pb isotopes show no evidence for sediment contamination; the subduction component enrichment is therefore a slab-derived enrichment. There is a subtle spatial variation in source chemistry which sees a northerly trend of decreasing enrichment of slab-derived fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australian efforts to provide orthopaedic surgeons with living, load-bearing scaffolds suitable for current joint (knee and hip) replacement surgery, non-union fracture repair, and miniscal and growth plate cartilage regeneration are being lead by teams at the Institute for Medical and Veterinary Science and Women's and Children's Hospital in Adelaide; the Peter MacCallum and St Vincent's Medical Research Institutes in Melbourne; and the Mater Medical Research Institute and new Institute for Health and Biomedical Innovation at QUT, Brisbane. In each case multidisciplinary teams are attempting to develop autologous living tissue constructs, utilising mesenchymal stem cells (MSC), with the intention of effecting seamless repair and regeneration of skeletal trauma and defects. In this article we will briefly review current knowledge of the phenotypic properties of MSC and discuss the potential therapeutic applications of these cells as exemplified by their use in cartilage repair and tissue engineering based approaches to the treatment of skeletal defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characteristics of modal sound radiation of finite cylindrical shells are studied using finite element and boundary element methods in this paper. In the low frequency range, modal radiation efficiencies of finite cylindrical shells are found to asymptotically approach those of the corresponding infinite cylindrical shell when structural trace wavelengths of the cylindrical shells are greater than the acoustic wavelength. Modal radiation efficiencies for each group of modes having the same circumferential modal index decrease as the axial modal index increases. They converge to each other when the axial trace wavelength is much greater than the circumferential trace wavelength. The mechanism leading to lower radiation efficiency of modes with higher circumferential modal index of short cylinders is explained. Similar to those of flat plate panels, change in slope or waviness is observed in modal radiation efficiency curves of modes with higher order axial modal index at medium frequencies. This is attributed to the interference of sound radiated by neighbouring vibrating cells when the distance between nodal lines of a vibrating mode is in the same order or smaller than the acoustic wavelength. Effects of the internal sound field on modal radiation efficiencies of a finite open-end cylinder are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFix(TM) plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse Fix(TM) plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study of photocatalytic oxidation of phenol over titanium dioxide films presents a method for the evaluation of true reaction kinetics. A flat plate reactor was designed for the specific purpose of investigating the influence of various reaction parameters, specifically photocatalytic film thickness, solution flow rate (1–8 l min−1), phenol concentration (20, 40 and 80 ppm), and irradiation intensity (70.6, 57.9, 37.1and 20.4 W m−2), in order to further understand their impact on the reaction kinetics. Special attention was given to the mass transfer phenomena and the influence of film thickness. The kinetics of phenol degradation were investigated with different irradiation levels and initial pollutant concentration. Photocatalytic degradation experiments were performed to evaluate the influence of mass transfer on the reaction and, in addition, the benzoic acid method was applied for the evaluation of mass transfer coefficient. For this study the reactor was modelled as a batch-recycle reactor. A system of equations that accounts for irradiation, mass transfer and reaction rate was developed to describe the photocatalytic process, to fit the experimental data and to obtain kinetic parameters. The rate of phenol photocatalytic oxidation was described by a Langmuir–Hinshelwood type law that included competitive adsorption and degradation of phenol and its by-products. The by-products were modelled through their additive effect on the solution total organic carbon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibre composite structures have become the most attractive candidate for civil engineering applications. Fibre reinforced plastic polymer (FRP) composite materials have been used in the rehabilitation and replacement of the old degrading traditional structures or build new structures. However, the lack of design standards for civil infrastructure limits their structural applications. The majority of the existing applications have been designed based on the research and guidelines provided by the fibre composite manufacturers or based on the designer’s experience. It has been a tendency that the final structure is generally over-designed. This paper provides a review on the available studies related to the design optimization of fibre composite structures used in civil engineering such as; plate, beam, box beam, sandwich panel, bridge girder, and bridge deck. Various optimization methods are presented and compared. In addition, the importance of using the appropriate optimization technique is discussed. An improved methodology, which considering experimental testing, numerical modelling, and design constrains, is proposed in the paper for design optimization of composite structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The customary approach to the study of meal size suggests that ‘events’ occurring during a meal lead to its termination. Recent research, however, suggests that a number of decisions are made before eating commences that may affect meal size. The present study sought to address three key research questions around meal size: the extent to which plate cleaning occurs; prevalence of pre-meal planning and its influence on meal size; and the effect of within-meal experiences, notably the development of satiation. To address these, a large-cohort internet-based questionnaire was developed. Results showed that plate cleaning occurred at 91% of meals, and was planned from the outset in 92% of these cases. A significant relationship between plate cleaning and meal planning was observed. Pre meal plans were resistant to modification over the course of the meal: only 18% of participants reported consumption that deviated from expected. By contrast, 28% reported continuing eating beyond satiation, and 57% stated that they could have eaten more at the end of the meal. Logistic regression confirmed pre-meal planning as the most important predictor of consumption. Together, our findings demonstrate the importance of meal planning as a key determinant of meal size and energy intake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper aims to review biomaterials used in manufacturing bone plates including advances in recent years and prospect in the future. It has found among all biomaterials, currently titanium and stainless steel alloys are the most common in production of bone plates. Other biomaterials such as Mg alloys, Ta alloys, SMAs, carbon fiber composites and bioceramics are potentially suitable for bone plates because of their advantages in biocompatibility, bioactivity and biodegradability. However, today either they are not used in bone plates or have limited applications in only some flexible small-size implants. This problem is mainly related to their poor mechanical properties. Additionally, production processes play an effective role. Therefore, in the future, further studies should be conducted to solve these problems and make them feasible for heavy-duty bone plates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natural convection thermal boundary layer adjacent to an inclined flat plate and inclined walls of an attic space subject to instantaneous and ramp heating and cooling is investigated. A scaling analysis has been performed to describe the flow behaviour and heat transfer. Major scales quantifying the flow velocity, flow development time, heat transfer and the thermal and viscous boundary layer thicknesses at different stages of the flow development are established. Scaling relations of heating-up and cooling-down times and heat transfer rates have also been reported for the case of attic space. The scaling relations have been verified by numerical simulations over a wide range of parameters. Further, a periodic temperature boundary condition is also considered to show the flow features in the attic space over diurnal cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It has the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. Although the LSB sections are commonly used as flexural members, no research has been undertaken on the shear behaviour of LSBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs. In this research finite element models of LSBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. They were validated by comparing their results with available experimental results. The models provided full details of the shear buckling and strength characteristics of LSBs, and showed the presence of considerable improvements to web shear buckling in LSBs and associated post-buckling strength. This paper presents the details of the finite element models of LSBs and the results. Both finite element analysis and experimental results showed that the current design rules in cold-formed steel codes are very conservative for the shear design of LSBs. The ultimate shear capacities from finite element analyses confirmed the accuracy of proposed shear strength equations for LSBs based on the North American specification and DSM design equations. Developed finite element models were used to investigate the reduction to shear capacity of LSBs when full height web side plates were not used or when only one web side plate was used, and these results are also presented in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the research carried out towards the development of a hybrid-composite floor plate systems (HCFPS) using polyurethane (PU), glass-fibre reinforced cement (GRC) and thin perforated steel laminate. HCFPS is configured in such a way where positive inherent properties of individual component materials are combined to offset any weakness and achieve the optimum performance. Finite Element modeling of HCFPS with ABAQUS 6.9-1, comparative studies of HCFPS with the steel deck composite system and experimental investigations which will be carried out are briefly described in the paper.