295 resultados para Opportunity Recognition
Robust mean super-resolution for less cooperative NIR iris recognition at a distance and on the move
Resumo:
Less cooperative iris identification systems at a distance and on the move often suffers from poor resolution. The lack of pixel resolution significantly degrades the iris recognition performance. Super-resolution has been considered to enhance resolution of iris images. This paper proposes a pixelwise super-resolution technique to reconstruct a high resolution iris image from a video sequence of an eye. A novel fusion approach is proposed to incorporate information details from multiple frames using robust mean. Experiments on the MBGC NIR portal database show the validity of the proposed approach in comparison with other resolution enhancement techniques.
Resumo:
Recent research has begun to address and even compare nascent entrepreneurship and nascent corporate entrepreneurship. An opportunity based view holds great potential to integrate both streams of research, but also presents challenges in how we define corporate entrepreneurship. We extend (corporate) entrepreneurship literature to the opportunity identification phase by providing a framework to classify different types of corporate entrepreneurship. Through analysis of a large dataset on nascent (corporate) entrepreneurship (PSEDII) we show that these corporate entrepreneurs differ largely from each other in terms of human capital. Prior studies have indicated that independent and corporate entrepreneurs pursue different types of opportunities and utilize different strategies. Our findings from the opportunity identification phase challenge those differences and seem to indicate a difference between the opportunities corporate entrepreneurs identify versus the opportunities they exploit.
Resumo:
Uncooperative iris identification systems at a distance suffer from poor resolution of the captured iris images, which significantly degrades iris recognition performance. Superresolution techniques have been employed to enhance the resolution of iris images and improve the recognition performance. However, all existing super-resolution approaches proposed for the iris biometric super-resolve pixel intensity values. This paper considers transferring super-resolution of iris images from the intensity domain to the feature domain. By directly super-resolving only the features essential for recognition, and by incorporating domain specific information from iris models, improved recognition performance compared to pixel domain super-resolution can be achieved. This is the first paper to investigate the possibility of feature domain super-resolution for iris recognition, and experiments confirm the validity of the proposed approach.
Resumo:
Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.
Resumo:
Facial expression is an important channel for human communication and can be applied in many real applications. One critical step for facial expression recognition (FER) is to accurately extract emotional features. Current approaches on FER in static images have not fully considered and utilized the features of facial element and muscle movements, which represent static and dynamic, as well as geometric and appearance characteristics of facial expressions. This paper proposes an approach to solve this limitation using ‘salient’ distance features, which are obtained by extracting patch-based 3D Gabor features, selecting the ‘salient’ patches, and performing patch matching operations. The experimental results demonstrate high correct recognition rate (CRR), significant performance improvements due to the consideration of facial element and muscle movements, promising results under face registration errors, and fast processing time. The comparison with the state-of-the-art performance confirms that the proposed approach achieves the highest CRR on the JAFFE database and is among the top performers on the Cohn-Kanade (CK) database.
Resumo:
Human facial expression is a complex process characterized of dynamic, subtle and regional emotional features. State-of-the-art approaches on facial expression recognition (FER) have not fully utilized this kind of features to improve the recognition performance. This paper proposes an approach to overcome this limitation using patch-based ‘salient’ Gabor features. A set of 3D patches are extracted to represent the subtle and regional features, and then inputted into patch matching operations for capturing the dynamic features. Experimental results show a significant performance improvement of the proposed approach due to the use of the dynamic features. Performance comparison with pervious work also confirms that the proposed approach achieves the highest CRR reported to date on the JAFFE database and a top-level performance on the Cohn-Kanade (CK) database.
Resumo:
The present article, which is abstracted from a larger study into the acquisition and exercise of nephrology nursing expertise, aims to explore the concept of recognition of expertise. The study used grounded theory methodology and involved 17 registered nurses who were practising in a metropolitan renal unit in New South Wales, Australia. Concurrent data collection and analysis was undertaken, incorporating participant observations and interviews. According to nurses in this study, patients, doctors and other nurses recognized that some nurses were experts while others were not. In addition, being trusted, being a role model and teaching others were important components of being recognized as an expert nephrology nurse. Of importance for nursing, the results of the present study indicate that knowledge and experience are not sufficient to ensure expert practice; recognition of expertise by others is an important function of expertise acquisition.
Resumo:
This thesis reports on a study in which research participants, four mature aged females starting an undergraduate degree at a regional Australian university, collaborated with the researcher in co-constructing a self-efficacy narrative. For the purpose of the study, self-efficacy was conceptualized as a means by which an individual initiates action to engage in a task or set of tasks, applies effort to perform the task or set of tasks, and persists in the face of obstacles encountered in order to achieve successful completion of the task or set of tasks. Qualitative interviews were conducted with the participants, initially investigating their respective life histories for an understanding of how they made the decision to embark on their respective academic program. Additional data were generated from a written exercise, prompting participants to furnish specific examples of self-efficacy. These data were incorporated into the individual's self-efficacy narrative, produced as the outcome of the "narrative analysis". Another aspect of the study entailed "analysis of narrative" in which analytic procedures were used to identify themes common to the self-efficacy narratives. Five main themes were identified: (a) participants' experience of schooling . for several participants their formative experience of school was not always positive, and yet their narratives demonstrated their agency in persevering and taking on university-level studies as mature aged persons; (b) recognition of family as an early influence . these influences were described as being both positive, in the sense of being supportive and encouraging, as well as posing obstacles that participants had to overcome in order to pursue their goals; (c) availability of supportive persons – the support of particular persons was acknowledged as a factor that enabled participants to persist in their respective endeavours; (d) luck or chance factors were recognised as placing participants at the right place at the right time, from which circumstances they applied considerable effort in order to convert the opportunity into a successful outcome; and (e) self-efficacy was identified as a major theme found in the narratives. The study included an evaluation of the research process by participants. A number of themes were identified in respect of the manner in which the research process was experienced as a helpful process. Participants commented that: (a) the research process was helpful in clarifying their respective career goals; (b) they appreciated opportunities provided by the research process to view their life from a different perspective and to better understand what motivated them, and what their preferred learning styles were; (c) their past successes in a range of different spheres were made more evident to them as they were guided in self-reflection, and their self-efficacious behaviour was affirmed; and (d) the opportunities provided by their participation in the research process to identify strengths of which they had not been consciously aware, to find confirmation of strengths they knew they possessed, and in some instances to rectify misconceptions they had held about aspects of their personality. The study made three important contributions to knowledge. Firstly, it provided a detailed explication of a qualitative narrative method in exploring self-efficacy, with the potential for application to other issues in educational, counselling and psychotherapy research. Secondly, it consolidated and illustrated social cognitive theory by proposing a dynamic model of self-efficacy, drawing on constructivist and interpretivist paradigms and extending extant theory and models. Finally, the study made a contribution to the debate concerning the nexus of qualitative research and counselling by providing guidelines for ethical practice in both endeavours for the practitioner-researcher.
Resumo:
Facial expression recognition (FER) algorithms mainly focus on classification into a small discrete set of emotions or representation of emotions using facial action units (AUs). Dimensional representation of emotions as continuous values in an arousal-valence space is relatively less investigated. It is not fully known whether fusion of geometric and texture features will result in better dimensional representation of spontaneous emotions. Moreover, the performance of many previously proposed approaches to dimensional representation has not been evaluated thoroughly on publicly available databases. To address these limitations, this paper presents an evaluation framework for dimensional representation of spontaneous facial expressions using texture and geometric features. SIFT, Gabor and LBP features are extracted around facial fiducial points and fused with FAP distance features. The CFS algorithm is adopted for discriminative texture feature selection. Experimental results evaluated on the publicly accessible NVIE database demonstrate that fusion of texture and geometry does not lead to a much better performance than using texture alone, but does result in a significant performance improvement over geometry alone. LBP features perform the best when fused with geometric features. Distributions of arousal and valence for different emotions obtained via the feature extraction process are compared with those obtained from subjective ground truth values assigned by viewers. Predicted valence is found to have a more similar distribution to ground truth than arousal in terms of covariance or Bhattacharya distance, but it shows a greater distance between the means.
Resumo:
Objective: To examine whether health professionals who commonly deal with mental disorder are able to identify co occurring alcohol misuse in young people presenting with depression. Method: Between September 2006 and January 2007, a survey examining beliefs regarding appropriate interventions for mental disorder in youth was sent to 1710 psychiatrists, 2000 general practitioners (GPs), 1628 mental health nurses, and 2000 psychologists in Australia. Participants within each professional group were randomly given one of four vignettes describing a young person with a DSM-IV mental disorder. Herein is reported data from the depression and depression with alcohol misuse vignettes. Results: A total of 305 psychiatrists, 258 GPs, 292 mental health nurses and 375 psychologists completed one of the depression vignettes. A diagnosis of mood disorder was identified by at least 83.8% of professionals, with no significant differences noted between professional groups. Rates of reported co-occurring substance use disorders were substantially lower, particularly among older professionals and psychologists. Conclusions: GPs, psychologists and mental health professionals do not readily identify co-occurring alcohol misuse in young people with depression. Given the substantially negative impact of co-occurring disorders, it is imperative that health-care professionals are appropriately trained to detect such disorders promptly, to ensure young people have access to effective, early intervention.
Resumo:
A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants
Resumo:
A new approach to recognition of images using invariant features based on higher-order spectra is presented. Higher-order spectra are translation invariant because translation produces linear phase shifts which cancel. Scale and amplification invariance are satisfied by the phase of the integral of a higher-order spectrum along a radial line in higher-order frequency space because the contour of integration maps onto itself and both the real and imaginary parts are affected equally by the transformation. Rotation invariance is introduced by deriving invariants from the Radon transform of the image and using the cyclic-shift invariance property of the discrete Fourier transform magnitude. Results on synthetic and actual images show isolated, compact clusters in feature space and high classification accuracies
Resumo:
Features derived from the trispectra of DFT magnitude slices are used for multi-font digit recognition. These features are insensitive to translation, rotation, or scaling of the input. They are also robust to noise. Classification accuracy tests were conducted on a common data base of 256× 256 pixel bilevel images of digits in 9 fonts. Randomly rotated and translated noisy versions were used for training and testing. The results indicate that the trispectral features are better than moment invariants and affine moment invariants. They achieve a classification accuracy of 95% compared to about 81% for Hu's (1962) moment invariants and 39% for the Flusser and Suk (1994) affine moment invariants on the same data in the presence of 1% impulse noise using a 1-NN classifier. For comparison, a multilayer perceptron with no normalization for rotations and translations yields 34% accuracy on 16× 16 pixel low-pass filtered and decimated versions of the same data.