133 resultados para Nonlinear Optics
Resumo:
The nonlinear self-interaction of the potential surface magnetoplasmons, propagating across the external magnetic field at the n-type semiconductor-metal interface is described in this manuscript. The studied nonlinearity is due to the free carriers dispersion law nonparabolicity and we show that it acts differently in semiconductor materials with normal and inverse band structures. The results of the nonlinear evolution of the surface magnetoplasmons are presented as well.
Resumo:
Radial profiles of magnetic fields in the electrostatic (E) and electromagnetic (H) modes of low-frequency (∼500) inductively coupled plasmas (ICP) were measured using miniature magnetic probes. A simplified plasma fluid model explaining the generation of the second harmonics of the azimuthal magnetic field in the plasma source was proposed. Because of apparent similarity in the procedure of derivation of the pondermotive force-caused nonlinear terms, pronounced generation of the nonlinear static azimuthal magnetic field could be expected.
Resumo:
The series expansion of the plasma fields and currents in vector spherical harmonics has been demonstrated to be an efficient technique for solution of nonlinear problems in spherically bounded plasmas. Using this technique, it is possible to describe the nonlinear plasma response to the rotating high-frequency magnetic field applied to the magnetically confined plasma sphere. The effect of the external magnetic field on the current drive and field configuration is studied. The results obtained are important for continuous current drive experiments in compact toruses. © 2000 American Institute of Physics.
Resumo:
This paper deals with the theoretical studies of nonlinear interactions of azimuthal surface waves (ASW) in cylindrical metal waveguides fully filled by a uniform magnetoactive plasma. These surface-type wave perturbations propagate in azimuthal direction across an external magnetic field, which is directed along the waveguide axis. The ASW is a relatively new kind of surface waves and so far the nonlinear effects associated with their propagation are outside the scope of scientific issues. They are characterized by a discrete set of mode numbers values which define the ASW eigenfrequencies. This fact leads to several peculiarities of ASW compared with ordinary surface-type waves.
Resumo:
The paper investigates the design of secret sharing that is immune against cheating (as defined by the Tompa-Woll attack). We examine secret sharing with binary shares and secrets. Bounds on the probability of successful cheating are given for two cases. The first case relates to secret sharing based on bent functions and results in a non-perfect scheme. The second case considers perfect secret sharing built on highly nonlinear balanced Boolean functions.
Resumo:
In this paper a novel controller for stable and precise operation of multi-rotors with heavy slung loads is introduced. First, simplified equations of motions for the multi-rotor and slung load are derived. The model is then used to design a Nonlinear Model Predictive Controller (NMPC) that can manage the highly nonlinear dynamics whilst accounting for system constraints. The controller is shown to simultaneously track specified waypoints whilst actively damping large slung load oscillations. A Linear-quadratic regulator (LQR) controller is also derived, and control performance is compared in simulation. Results show the improved performance of the Nonlinear Model Predictive Control (NMPC) controller over a larger flight envelope, including aggressive maneuvers and large slung load displacements. Computational cost remains relatively small, amenable to practical implementation. Such systems for small Unmanned Aerial Vehicles (UAVs) may provide significant benefit to several applications in agriculture, law enforcement and construction.
Resumo:
A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.
Resumo:
A discrete agent-based model on a periodic lattice of arbitrary dimension is considered. Agents move to nearest-neighbor sites by a motility mechanism accounting for general interactions, which may include volume exclusion. The partial differential equation describing the average occupancy of the agent population is derived systematically. A diffusion equation arises for all types of interactions and is nonlinear except for the simplest interactions. In addition, multiple species of interacting subpopulations give rise to an advection-diffusion equation for each subpopulation. This work extends and generalizes previous specific results, providing a construction method for determining the transport coefficients in terms of a single conditional transition probability, which depends on the occupancy of sites in an influence region. These coefficients characterize the diffusion of agents in a crowded environment in biological and physical processes.
Resumo:
This paper proposes a nonlinear excitation controller to improve transient stability, oscillation damping and voltage regulation of the power system. The energy function of the predicted system states is used to obtain the desired flux for the next time step, which in turn is used to obtain a supplementary control input using an inverse filtering method. The inverse filtering technique enables the system to provide an additional input for the excitation system, which forces the system to track the desired flux. Synchronous generator flux saturation model is used in this paper. A single machine infinite bus (SMIB) test system is used to demonstrate the efficacy of the proposed control method using time-domain simulations. The robustness of the controller is assessed under different operating conditions.
Resumo:
This study compared optics of eyes in people with diabetes with those age-balanced controls. Relative to the control group, the diabetes group demonstrated greater lens thickness, more curved lens shapes, smaller lens diameters, higher light scatter, greater lens yellowing, and poorer focusing ability. While the optics of the people with diabetes made them appear as older eyes than those of people of the same age without diabetes, the differences did not increase significantly with age. It was concluded that age-related changes in eyes of people with diabetes need not be accelerated if the diabetes is well controlled.
Resumo:
In this paper, we derive a new nonlinear two-sided space-fractional diffusion equation with variable coefficients from the fractional Fick’s law. A semi-implicit difference method (SIDM) for this equation is proposed. The stability and convergence of the SIDM are discussed. For the implementation, we develop a fast accurate iterative method for the SIDM by decomposing the dense coefficient matrix into a combination of Toeplitz-like matrices. This fast iterative method significantly reduces the storage requirement of O(n2)O(n2) and computational cost of O(n3)O(n3) down to n and O(nlogn)O(nlogn), where n is the number of grid points. The method retains the same accuracy as the underlying SIDM solved with Gaussian elimination. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.
Resumo:
In this paper, a new alternating direction implicit Galerkin--Legendre spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation is developed. The temporal component is discretized by the Crank--Nicolson method. The detailed implementation of the method is presented. The stability and convergence analysis is strictly proven, which shows that the derived method is stable and convergent of order $2$ in time. An optimal error estimate in space is also obtained by introducing a new orthogonal projector. The present method is extended to solve the fractional FitzHugh--Nagumo model. Numerical results are provided to verify the theoretical analysis.