137 resultados para NONPOLAR GASES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated the relationship of European Union carbon dioxide CO2 allowances EUAs prices and oil prices by employing a VAR analysis, Granger causality test and impulse response function. If oil price continues increasing, companies will decrease dependency on fossil fuels because of an increase in energy costs. Therefore, the price of EUAs may be affected by variations in oil prices if the greenhouse gases discharged by the consumption of alternative energy are less than that of fossil fuels. There are no previous studies that investigated these relationships. In this study, we analyzed eight types of EUAs EUA05 to EUA12 with a time series daily data set during 2005-2007 collected from a European Climate Exchange time series data set. Differentiations in these eight types were redemption period. We used the New York Mercantile Exchange light sweet crude price as an oil price. From our examination, we found that only the EUA06 and EUA07 types of EUAs Granger-cause oil prices and vice versa and other six types of EUAs do not Granger-cause oil price. These results imply that the earlier redemption period types of EUAs are more sensitive to oil price. In employing the impulse response function, the results showed that a shock to oil price has a slightly positive effect on all types of EUAs for a very short period. On the other hand, we found that a shock to price of EUA has a slightly negative effect on oil price following a positive effect in only EUA06 and EUA07 types. Therefore, these results imply that fluctuations in EUAs prices and oil prices have little effect on each other. Lastly, we did not consider the substitute energy prices in this study, so we plan to include the prices of coal and natural gas in future analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal decomposition process of kaolinite–potassium acetate intercalation complex has been studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR-MS). The results showed that the thermal decomposition of the complex took place in four temperature ranges, namely 50–100, 260–320, 320–550, and 650–780 °C. The maximal mass losses rate for the thermal decomposition of the kaolinite–potassium acetate intercalation complex was observed at 81, 296, 378, 411, 486, and 733 °C, which was attributed to (a) loss of the adsorbed water, (b) thermal decomposition of surface-adsorbed potassium acetate (KAc), (c) the loss of the water coordinated to potassium acetate in the intercalated kaolinite, (d) the thermal decomposition of intercalated KAc in the interlayer of kaolinite and the removal of inner surface hydroxyls, (e) the loss of the inner hydroxyls, and (f) the thermal decomposition of carbonate derived from the decomposition of KAc. The thermal decomposition of intercalated potassium acetate started in the range 320–550 °C accompanied by the release of water, acetone, carbon dioxide, and acetic acid. The identification of pyrolysis fragment ions provided insight into the thermal decomposition mechanism. The results showed that the main decomposition fragment ions of the kaolinite–KAc intercalation complex were water, acetone, carbon dioxide, and acetic acid. TG-FTIR-MS was demonstrated to be a powerful tool for the investigation of kaolinite intercalation complexes. It delivers a detailed insight into the thermal decomposition processes of the kaolinite intercalation complexes characterized by mass loss and the evolved gases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin film nanostructured gas sensors typically operate at temperatures above 400°C, but lower temperature operation is highly desirable, especially for remote area field sensing as this reduces significantly power consumption. We have investigated a range of sensor materials based on both pure and doped tungsten oxide (mainly focusing on Fe-doping), deposited using both thermal evaporation and electron-beam evaporation, and using a variety of post-deposition annealing. The films show excellent sensitivity at operating temperatures as low as 150°C for detection of NO2. There is a definite relationship between the sensitivity and the crystallinity and nanostructure obtained through the deposition and heat treatment processes, as well as variations in the conductivity caused both by doping and heat treatmetn. The ultimate goal of this work is to control the sensing properties, including selectivity to specific gases through the engineering of the electronic properties and the nanostructure of the films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha−1 on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha−1) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we have studied the mineral dawsonite by using a combination of scanning electron microscopy with EDS and vibrational spectroscopy. Single crystals show an acicular habitus forming aggregates with a rosette shape. The chemical analysis shows a phase composed of C, Al, and Na. Two distinct Raman bands at 1091 and 1068 cm−1 are assigned to the CO32− ν1 symmetric stretching mode. Multiple bands are observed in both the Raman and infrared spectra in the antisymmetric stretching and bending regions showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the dawsonite structure. Multiple OH deformation vibrations centred upon 950 cm−1 in both the Raman and infrared spectra show that the OH units in the dawsonite structure are non-equivalent. Raman bands observed at 3250, 3283 and 3295 cm−1 are assigned to OH stretching vibrations. The position of these bands indicates strong hydrogen bonding of the OH units in the dawsonite structure. The formation of the mineral dawsonite has the potential to offer a mechanism for the geosequestration of greenhouse gases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type of contract model may have a significant influence on achieving project objectives, including environmental and climate change goals. This research investigates non-standard contract models impacting greenhouse gas emissions (GHG) in transport infrastructure construction in Australia. The research is based on the analysis of two case studies: an Early Contractor Involvement (ECI) contract and a Design and Construct (D&C) contract with GHG reduction requirements embedded in the contractor selection. Main findings support the use of ECIs for better integrating decisions made during the planning phase with the construction activities, and improve environmental outcomes while achieving financial and time savings. Key words: greenhouse gases reduction; road construction; contracting; ECI; D&C

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses following high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise, followed by one of two recovery interventions: 10 min of cold water immersion at 10°C, or 10 min active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 h and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during six sets of 10 squats at 80% 1RM. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, the participants lifted a greater load (p<0.05; 38%; Cohen’s d 1.3) following CWI compared with active recovery. During CWI, muscle temperature decreased 6°C below post-exercise values, and remained below pre-exercise values for another 35 min. Venous blood O2 saturation decreased below pre-exercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma interleukin-6 concentration was higher after CWI compared with active recovery. These results suggest that cold water immersion after resistance exercise allow athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofuel produced by fast pyrolysis from biomass is a promising candidate. The heart of the system is a reactor which is directly or indirectly heated to approximately 500°C by exhaust gases from a combustor that burns pyrolysis gas and some of the by-product char. In most of the cases, external biomass heater is used as heating source of the system while internal electrical heating is recently implemented as source of reactor heating. However, this heating system causes biomass or other conventional forms of fuel consumption to produce renewable energy and contributes to environmental pollution. In order to overcome these, the feasibility of incorporating solar energy with fast pyrolysis has been investigated. The main advantages of solar reactor heating include renewable source of energy, comparatively simpler devices, and no environmental pollution. A lab scale pyrolysis setup has been examined along with 1.2 m diameter parabolic reflector concentrator that provides hot exhaust gas up to 162°C. The study shows that about 32.4% carbon dioxide (CO2) emissions and almost one-third portion of fuel cost are reduced by incorporating solar heating system. Successful implementation of this proposed solar assisted pyrolysis would open a prospective window of renewable energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

100 year old gasoline engine technology vehicles have now become one of the major contributors of greenhouse gases. Plug-in Electric Vehicles (PEVs) have been proposed to achieve environmental friendly transportation. Even though the PEV usage is currently increasing, a technology breakthrough would be required to overcome battery related drawbacks. Although battery technology is evolving, drawbacks inherited with batteries such as; cost, size, weight, slower charging characteristic and low energy density would still be dominating constrains for development of EVs. Furthermore, PEVs have not been accepted as preferred choice by many consumers due to charging related issues. To address battery related limitations, the concept of dynamic Wireless Power Transfer (WPT) enabled EVs have been proposed in which EV is being charged while it is in motion. WPT enabled infrastructure has to be employed to achieve dynamic EV charging concept. The weight of the battery pack can be reduced as the required energy storage is lower if the vehicle can be powered wirelessly while driving. Stationary WPT charging where EV is charged wirelessly when it is stopped, is simpler than dynamic WPT in terms of design complexity. However, stationary WPT does not increase vehicle range compared to wired-PEVs. State-of-art WPT technology for future transportation is discussed in this chapter. Analysis of the WPT system and its performance indices are introduced. Modelling the WPT system using different methods such as equivalent circuit theory, two port network theory and coupled mode theory is described illustrating their own merits in Sect. 2.3. Both stationary and dynamic WPT for EV applications are illustrated in Sect. 2.4. Design challenges and optimization directions are analysed in Sect. 2.5. Adaptive tuning techniques such as adaptive impedance matching and frequency tuning are also discussed. A case study for optimizing resonator design is presented in Sect. 2.6. Achievements by the research community is introduced highlighting directions for future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary requirements for high-biomass-concentration microalgal cultivation include a photon source and distribution, efficient gas exchange and suitable growth medium composition. However, for mass outdoor production of microalgae, growth medium composition is a major controlling factor as most of the other factors such as light source and distribution are virtually uncontrollable. This work utilises an elemental balance approach between growth medium and biomass compositions to obtain high-density microalgal cultures in an open system. F medium, commonly used for the cultivation of marine microalgae such as Tetraselmis suecica was redesigned on the basis of increasing the biomass capacity of its major deficient components to support high biomass concentrations (τ ∼ 5.0 % for N, S and τ ∼ 10 % P), and the entire formulation was dissolved in 0.2 um sterile filtered natural seawater. Results show that the new medium (F') displayed a maximum biomass concentration and total lipid concentration of 1.29 g L 1 and 108.7 mg L 1 respectively, which represents over 2-fold increase compared to that of the F medium. Keeping all variables constant except growth medium, and using F medium as the base case of 1 medium cost (MC) unit mg -1 lipid, the F' medium yielded lipid at a cost of only 0.35 MC unit mg -1 lipids. These results show that greater amounts of biomass and lipids can be obtained more economically with minimal extra effort simply by using an optimised growth medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon dioxide (CO2) is considered the most harmful of the greenhouse gases. Despite policy efforts, transport is the only sector experiencing an increase in the level of CO2 emissions and thereby possesses a major threat to sustainable development. In contrast, a reduced level of mobility has been associated with an increasing risk of being socially excluded. However, despite being the two key elements in transport policy, little effort has so far been made to investigate the links between CO2 emissions and social exclusion. This research contributes to this gap by analysing data from 157 weekly activity-travel diaries collected in rural Northern Ireland. CO2 emission levels were calculated using average speed models for different modes of transport. Regression analyses were then conducted to identify the socio-spatial patterns associated with these CO2 emissions, mode choice behaviour, and patterns of participation in activities. This research found that despite emitting a higher level of carbon dioxide, groups in rural areas possess the risk of being socially excluded due to their higher levels of mobility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-thermal plasma (NTP) has been introduced over the past several years as a promising method for nitrogen oxide (NOx) removal. The intent, when using NTP, is to selectively transfer input electrical energy to the electrons, and to not expend this in heating the entire gas stream, which generates free radicals through collisions, and promotes the desired chemical changes in the exhaust gases. The generated active species react with the pollutant molecules and decompose them. This paper reviews and summarizes relevant literature regarding various aspects of the application of {NTP} technology on {NOx} removal from exhaust gases. A comprehensive description of available scientific literature on {NOx} removal using {NTP} technology is presented, including various types of NTP, e.g. dielectric barrier discharge, corona discharge and electron beam. Furthermore, the combination of {NTP} with catalyst and adsorbent for better {NOx} removal efficiency is presented in detail. The removal of {NOx} from both simulated gases and real diesel engines is also considered in this review paper. As {NTP} is a new technique and is not yet commercialized, there is a need for more studies to be performed in this field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silylated kaolinites were synthesized at 80°C without the use of inert gas protection. The method presented started with mechanical grinding of kaolinite, followed by grafting with 3-aminopropyltriethoxysilane (APTES). The mechanical grinding treatment destroyed the ordered sheets of kaolinite, formed fine fragments and generated broken bonds (undercoordinated metal ions). These broken bonds served as new sites for the condensation with APTES. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of –CH2 from APTES. 29Si cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy (29Si CP/MAS NMR) showed that the principal bonding mechanism between APTES and kaolinite fitted a tridentate silylation model (T3) with a chemical shift at 66.7 ppm. The silane loadings of the silylated samples were estimated from the mass loss obtained by TG-DTG curves. The results showed that the 6-hour ground kaolinite could be grafted with the most APTES (7.0%) using cyclohexane as solvent. The loaded amount of APTES in the silylated samples obtained in different solvents decreased in the order as: nonpolar solvent > polar solvent with low dielectric constant (toluene) > polar solvent with high dielectric constant (ethanol).