251 resultados para Modelling lifetime data
Resumo:
Objective Theoretical models of post-traumatic growth (PTG) have been derived in the general trauma literature to describe the post-trauma experience that facilitates the perception of positive life changes. To develop a statistical model identifying factors that are associated with PTG, structural equation modelling (SEM) was used in the current study to assess the relationships between perception of diagnosis severity, rumination, social support, distress, and PTG. Method A statistical model of PTG was tested in a sample of participants diagnosed with a variety of cancers (N=313). Results An initial principal components analysis of the measure used to assess rumination revealed three components: intrusive rumination, deliberate rumination of benefits, and life purpose rumination. SEM results indicated that the model fit the data well and that 30% of the variance in PTG was explained by the variables. Trauma severity was directly related to distress, but not to PTG. Deliberately ruminating on benefits and social support were directly related to PTG. Life purpose rumination and intrusive rumination were associated with distress. Conclusions The model showed that in addition to having unique correlating factors, distress was not related to PTG, thereby providing support for the notion that these are discrete constructs in the post-diagnosis experience. The statistical model provides support that post-diagnosis experience is simultaneously shaped by positive and negative life changes and that one or the other outcome may be prevalent or may occur concurrently. As such, an implication for practice is the need for supportive care that is holistic in nature.
Resumo:
This paper describes the development of a simulation model for operating theatres. Elective patient scheduling is complicated by several factors; stochastic demand for resources due to variation in the nature and severity of a patient’s illness, unexpected complications in a patient’s course of treatment and the arrival of non-scheduled emergency patients which compete for resources. Extend simulation software was used for its ability to represent highly complex systems and analyse model outputs. Patient arrivals and lengths of surgery are determined by analysis of historical data. The model was used to explore the effects increasing patient arrivals and alternative elective patient admission disciplines would have on the performance measures. The model can be used as a decision support system for hospital planners.
Resumo:
Chronicwounds fail to proceed through an orderly process to produce anatomic and functional integrity and are a significant socioeconomic problem. There is much debate about the best way to treat these wounds. In this thesis we review earlier mathematical models of angiogenesis and wound healing. Many of these models assume a chemotactic response of endothelial cells, the primary cell type involved in angiogenesis. Modelling this chemotactic response leads to a system of advection-dominated partial differential equations and we review numerical methods to solve these equations and argue that the finite volume method with flux limiting is best-suited to these problems. One treatment of chronic wounds that is shrouded with controversy is hyperbaric oxygen therapy (HBOT). There is currently no conclusive data showing that HBOT can assist chronic wound healing, but there has been some clinical success. In this thesis we use several mathematical models of wound healing to investigate the use of hyperbaric oxygen therapy to assist the healing process - a novel threespecies model and a more complex six-species model. The second model accounts formore of the biological phenomena but does not lend itself tomathematical analysis. Bothmodels are then used tomake predictions about the efficacy of hyperbaric oxygen therapy and the optimal treatment protocol. Based on our modelling, we are able to make several predictions including that intermittent HBOT will assist chronic wound healing while normobaric oxygen is ineffective in treating such wounds, treatment should continue until healing is complete and finding the right protocol for an individual patient is crucial if HBOT is to be effective. Analysis of the models allows us to derive constraints for the range of HBOT protocols that will stimulate healing, which enables us to predict which patients are more likely to have a positive response to HBOT and thus has the potential to assist in improving both the success rate and thus the cost-effectiveness of this therapy.
Resumo:
Freeways are divided roadways designed to facilitate the uninterrupted movement of motor vehicles. However, many freeways now experience demand flows in excess of capacity, leading to recurrent congestion. The Highway Capacity Manual (TRB, 1994) uses empirical macroscopic relationships between speed, flow and density to quantify freeway operations and performance. Capacity may be predicted as the maximum uncongested flow achievable. Although they are effective tools for design and analysis, macroscopic models lack an understanding of the nature of processes taking place in the system. Szwed and Smith (1972, 1974) and Makigami and Matsuo (1990) have shown that microscopic modelling is also applicable to freeway operations. Such models facilitate an understanding of the processes whilst providing for the assessment of performance, through measures of capacity and delay. However, these models are limited to only a few circumstances. The aim of this study was to produce more comprehensive and practical microscopic models. These models were required to accurately portray the mechanisms of freeway operations at the specific locations under consideration. The models needed to be able to be calibrated using data acquired at these locations. The output of the models needed to be able to be validated with data acquired at these sites. Therefore, the outputs should be truly descriptive of the performance of the facility. A theoretical basis needed to underlie the form of these models, rather than empiricism, which is the case for the macroscopic models currently used. And the models needed to be adaptable to variable operating conditions, so that they may be applied, where possible, to other similar systems and facilities. It was not possible to produce a stand-alone model which is applicable to all facilities and locations, in this single study, however the scene has been set for the application of the models to a much broader range of operating conditions. Opportunities for further development of the models were identified, and procedures provided for the calibration and validation of the models to a wide range of conditions. The models developed, do however, have limitations in their applicability. Only uncongested operations were studied and represented. Driver behaviour in Brisbane was applied to the models. Different mechanisms are likely in other locations due to variability in road rules and driving cultures. Not all manoeuvres evident were modelled. Some unusual manoeuvres were considered unwarranted to model. However the models developed contain the principal processes of freeway operations, merging and lane changing. Gap acceptance theory was applied to these critical operations to assess freeway performance. Gap acceptance theory was found to be applicable to merging, however the major stream, the kerb lane traffic, exercises only a limited priority over the minor stream, the on-ramp traffic. Theory was established to account for this activity. Kerb lane drivers were also found to change to the median lane where possible, to assist coincident mergers. The net limited priority model accounts for this by predicting a reduced major stream flow rate, which excludes lane changers. Cowan's M3 model as calibrated for both streams. On-ramp and total upstream flow are required as input. Relationships between proportion of headways greater than 1 s and flow differed for on-ramps where traffic leaves signalised intersections and unsignalised intersections. Constant departure onramp metering was also modelled. Minimum follow-on times of 1 to 1.2 s were calibrated. Critical gaps were shown to lie between the minimum follow-on time, and the sum of the minimum follow-on time and the 1 s minimum headway. Limited priority capacity and other boundary relationships were established by Troutbeck (1995). The minimum average minor stream delay and corresponding proportion of drivers delayed were quantified theoretically in this study. A simulation model was constructed to predict intermediate minor and major stream delays across all minor and major stream flows. Pseudo-empirical relationships were established to predict average delays. Major stream average delays are limited to 0.5 s, insignificant compared with minor stream delay, which reach infinity at capacity. Minor stream delays were shown to be less when unsignalised intersections are located upstream of on-ramps than signalised intersections, and less still when ramp metering is installed. Smaller delays correspond to improved merge area performance. A more tangible performance measure, the distribution of distances required to merge, was established by including design speeds. This distribution can be measured to validate the model. Merging probabilities can be predicted for given taper lengths, a most useful performance measure. This model was also shown to be applicable to lane changing. Tolerable limits to merging probabilities require calibration. From these, practical capacities can be estimated. Further calibration is required of traffic inputs, critical gap and minimum follow-on time, for both merging and lane changing. A general relationship to predict proportion of drivers delayed requires development. These models can then be used to complement existing macroscopic models to assess performance, and provide further insight into the nature of operations.
Resumo:
This article explores the use of probabilistic classification, namely finite mixture modelling, for identification of complex disease phenotypes, given cross-sectional data. In particular, if focuses on posterior probabilities of subgroup membership, a standard output of finite mixture modelling, and how the quantification of uncertainty in these probabilities can lead to more detailed analyses. Using a Bayesian approach, we describe two practical uses of this uncertainty: (i) as a means of describing a person’s membership to a single or multiple latent subgroups and (ii) as a means of describing identified subgroups by patient-centred covariates not included in model estimation. These proposed uses are demonstrated on a case study in Parkinson’s disease (PD), where latent subgroups are identified using multiple symptoms from the Unified Parkinson’s Disease Rating Scale (UPDRS).
Resumo:
This paper presents a deterministic modelling approach to predict diffraction loss for an innovative Multi-User-Single-Antenna (MUSA) MIMO technology, proposed for rural Australian environments. In order to calculate diffraction loss, six receivers have been considered around an access point in a selected rural environment. Generated terrain profiles for six receivers are presented in this paper. Simulation results using classical diffraction models and diffraction theory are also presented by accounting the rural Australian terrain data. Results show that in an area of 900 m by 900 m surrounding the receivers, path loss due to diffraction can range between 5 dB and 35 dB. Diffraction loss maps can contribute to determine the optimal location for receivers of MUSA-MIMO systems in rural areas.
Resumo:
Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Therefore, appropriate model selection for successful practical implementation requires not only a mathematical understanding of each model type, but also an appreciation of how a particular business intends to utilise a model and its outputs. This paper discusses business issues that need to be considered when selecting an appropriate modelling approach for trial. It also presents classification tables and process flow diagrams to assist industry and research personnel select appropriate prognostic models for predicting the remaining useful life of engineering assets within their specific business environment. The paper then explores the strengths and weaknesses of the main prognostics model classes to establish what makes them better suited to certain applications than to others and summarises how each have been applied to engineering prognostics. Consequently, this paper should provide a starting point for young researchers first considering options for remaining useful life prediction. The models described in this paper are Knowledge-based (expert and fuzzy), Life expectancy (stochastic and statistical), Artificial Neural Networks, and Physical models.
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.
Resumo:
This paper discusses the statistical analyses used to derive bridge live loads models for Hong Kong from a 10-year weigh-in-motion (WIM) data. The statistical concepts required and the terminologies adopted in the development of bridge live load models are introduced. This paper includes studies for representative vehicles from the large amount of WIM data in Hong Kong. Different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc are first analyzed by various stochastic processes in order to obtain the mathematical distributions of these parameters. As a prerequisite to determine accurate bridge design loadings in Hong Kong, this study not only takes advantages of code formulation methods used internationally but also presents a new method for modelling collected WIM data using a statistical approach.
Resumo:
The use of stable isotope ratios δ18O and δ2H are well established in assessment of groundwater systems and their hydrology. The conventional approach is based on x/y plots and relation to various MWL’s, and plots of either ratio against parameters such as Clor EC. An extension of interpretation is the use of 2D maps and contour plots, and 2D hydrogeological vertical sections. An enhancement of presentation and interpretation is the production of “isoscapes”, usually as 2.5D surface projections. We have applied groundwater isotopic data to a 3D visualisation, using the alluvial aquifer system of the Lockyer Valley. The 3D framework is produced in GVS (Groundwater Visualisation System). This format enables enhanced presentation by displaying the spatial relationships and allowing interpolation between “data points” i.e. borehole screened zones where groundwater enters. The relative variations in the δ18O and δ2H values are similar in these ambient temperature systems. However, δ2H better reflects hydrological processes, whereas δ18O also reflects aquifer/groundwater exchange reactions. The 3D model has the advantage that it displays borehole relations to spatial features, enabling isotopic ratios and their values to be associated with, for example, bedrock groundwater mixing, interaction between aquifers, relation to stream recharge, and to near-surface and return irrigation water evaporation. Some specific features are also shown, such as zones of leakage of deeper groundwater (in this case with a GAB signature). Variations in source of recharging water at a catchment scale can be displayed. Interpolation between bores is not always possible depending on numbers and spacing, and by elongate configuration of the alluvium. In these cases, the visualisation uses discs around the screens that can be manually expanded to test extent or intersections. Separate displays are used for each of δ18O and δ2H and colour coding for isotope values.
Resumo:
This chapter focuses on the interactions and roles between delays and intrinsic noise effects within cellular pathways and regulatory networks. We address these aspects by focusing on genetic regulatory networks that share a common network motif, namely the negative feedback loop, leading to oscillatory gene expression and protein levels. In this context, we discuss computational simulation algorithms for addressing the interplay of delays and noise within the signaling pathways based on biological data. We address implementational issues associated with efficiency and robustness. In a molecular biology setting we present two case studies of temporal models for the Hes1 gene (Monk, 2003; Hirata et al., 2002), known to act as a molecular clock, and the Her1/Her7 regulatory system controlling the periodic somite segmentation in vertebrate embryos (Giudicelli and Lewis, 2004; Horikawa et al., 2006).
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.