163 resultados para Model-based bootstrap
Resumo:
Background and significance: Older adults with chronic diseases are at increasing risk of hospital admission and readmission. Approximately 75% of adults have at least one chronic condition, and the odds of developing a chronic condition increases with age. Chronic diseases consume about 70% of the total Australian health expenditure, and about 59% of hospital events for chronic conditions are potentially preventable. These figures have brought to light the importance of the management of chronic disease among the growing older population. Many studies have endeavoured to develop effective chronic disease management programs by applying social cognitive theory. However, limited studies have focused on chronic disease self-management in older adults at high risk of hospital readmission. Moreover, although the majority of studies have covered wide and valuable outcome measures, there is scant evidence on examining the fundamental health outcomes such as nutritional status, functional status and health-related quality of life. Aim: The aim of this research was to test social cognitive theory in relation to self-efficacy in managing chronic disease and three health outcomes, namely nutritional status, functional status, and health-related quality of life, in older adults at high risk of hospital readmission. Methods: A cross-sectional study design was employed for this research. Three studies were undertaken. Study One examined the nutritional status and validation of a nutritional screening tool; Study Two explored the relationships between participants. characteristics, self-efficacy beliefs, and health outcomes based on the study.s hypothesized model; Study Three tested a theoretical model based on social cognitive theory, which examines potential mechanisms of the mediation effects of social support and self-efficacy beliefs. One hundred and fifty-seven patients aged 65 years and older with a medical admission and at least one risk factor for readmission were recruited. Data were collected from medical records on demographics, medical history, and from self-report questionnaires. The nutrition data were collected by two registered nurses. For Study One, a contingency table and the kappa statistic was used to determine the validity of the Malnutrition Screening Tool. In Study Two, standard multiple regression, hierarchical multiple regression and logistic regression were undertaken to determine the significant influential predictors for the three health outcome measures. For Study Three, a structural equation modelling approach was taken to test the hypothesized self-efficacy model. Results: The findings of Study One suggested that a high prevalence of malnutrition continues to be a concern in older adults as the prevalence of malnutrition was 20.6% according to the Subjective Global Assessment. Additionally, the findings confirmed that the Malnutrition Screening Tool is a valid nutritional screening tool for hospitalized older adults at risk of readmission when compared to the Subjective Global Assessment with high sensitivity (94%), and specificity (89%) and substantial agreement between these two methods (k = .74, p < .001; 95% CI .62-.86). Analysis data for Study Two found that depressive symptoms and perceived social support were the two strongest influential factors for self-efficacy in managing chronic disease in a hierarchical multiple regression. Results of multivariable regression models suggested advancing age, depressive symptoms and less tangible support were three important predictors for malnutrition. In terms of functional status, a standard regression model found that social support was the strongest predictor for the Instrumental Activities of Daily Living, followed by self-efficacy in managing chronic disease. The results of standard multiple regression revealed that the number of hospital readmission risk factors adversely affected the physical component score, while depressive symptoms and self-efficacy beliefs were two significant predictors for the mental component score. In Study Three, the results of the structural equation modelling found that self-efficacy partially mediated the effect of health characteristics and depression on health-related quality of life. The health characteristics had strong direct effects on functional status and body mass index. The results also indicated that social support partially mediated the relationship between health characteristics and functional status. With regard to the joint effects of social support and self-efficacy, social support fully mediated the effect of health characteristics on self-efficacy, and self-efficacy partially mediated the effect of social support on functional status and health-related quality of life. The results also demonstrated that the models fitted the data well with relative high variance explained by the models, implying the hypothesized constructs under discussion were highly relevant, and hence the application for social cognitive theory in this context was supported. Conclusion: This thesis highlights the applicability of social cognitive theory on chronic disease self-management in older adults at risk of hospital readmission. Further studies are recommended to validate and continue to extend the development of social cognitive theory on chronic disease self-management in older adults to improve their nutritional and functional status, and health-related quality of life.
Resumo:
This study proposes a framework of a model-based hot spot identification method by applying full Bayes (FB) technique. In comparison with the state-of-the-art approach [i.e., empirical Bayes method (EB)], the advantage of the FB method is the capability to seamlessly integrate prior information and all available data into posterior distributions on which various ranking criteria could be based. With intersection crash data collected in Singapore, an empirical analysis was conducted to evaluate the following six approaches for hot spot identification: (a) naive ranking using raw crash data, (b) standard EB ranking, (c) FB ranking using a Poisson-gamma model, (d) FB ranking using a Poisson-lognormal model, (e) FB ranking using a hierarchical Poisson model, and (f) FB ranking using a hierarchical Poisson (AR-1) model. The results show that (a) when using the expected crash rate-related decision parameters, all model-based approaches perform significantly better in safety ranking than does the naive ranking method, and (b) the FB approach using hierarchical models significantly outperforms the standard EB approach in correctly identifying hazardous sites.
Resumo:
This study proposes a full Bayes (FB) hierarchical modeling approach in traffic crash hotspot identification. The FB approach is able to account for all uncertainties associated with crash risk and various risk factors by estimating a posterior distribution of the site safety on which various ranking criteria could be based. Moreover, by use of hierarchical model specification, FB approach is able to flexibly take into account various heterogeneities of crash occurrence due to spatiotemporal effects on traffic safety. Using Singapore intersection crash data(1997-2006), an empirical evaluate was conducted to compare the proposed FB approach to the state-of-the-art approaches. Results show that the Bayesian hierarchical models with accommodation for site specific effect and serial correlation have better goodness-of-fit than non hierarchical models. Furthermore, all model-based approaches perform significantly better in safety ranking than the naive approach using raw crash count. The FB hierarchical models were found to significantly outperform the standard EB approach in correctly identifying hotspots.
Resumo:
The skyrocketing trend for social media on the Internet greatly alters analytical Customer Relationship Management (CRM). Against this backdrop, the purpose of this paper is to advance the conceptual design of Business Intelligence (BI) systems with data identified from social networks. We develop an integrated social network data model, based on an in-depth analysis of Facebook. The data model can inform the design of data warehouses in order to offer new opportunities for CRM analyses, leading to a more consistent and richer picture of customers? characteristics, needs, wants, and demands. Four major contributions are offered. First, Social CRM and Social BI are introduced as emerging fields of research. Second, we develop a conceptual data model to identify and systematize the data available on online social networks. Third, based on the identified data, we design a multidimensional data model as an early contribution to the conceptual design of Social BI systems and demonstrate its application by developing management reports in a retail scenario. Fourth, intellectual challenges for advancing Social CRM and Social BI are discussed.
Resumo:
Academic pressure among adolescents is a major risk factor for poor mental health and suicide and other harmful behaviours. While this is a worldwide phenomenon, it appears to be especially pronounced in China and other East Asian countries. Despite a growing body of research into adolescent mental health in recent years, the multiple constructs within the ‘educational stress’ phenomenon have not been clearly articulated in Chinese contexts. Further, the individual, family, school and peer influencing factors for educational stress and its associations with adolescent mental health are not well understood. An in-depth investigation may provide important information for the ongoing educational reform in Mainland China with a special focus on students’ mental health and wellbeing. The primary goal of this study was to examine the relative contribution of educational stress to poor mental health, in comparison to other well-known individual, family, school and peer factors. Another important task was to identify significant risk factors for educational stress. In addition, due to the lack of a culturally suitable instrument for educational stress in this population, a new tool – the Educational Stress Scale for Adolescents (ESSA) was initially developed in this study and tested for reliability and validity. A self-administered questionnaire was used to collect information from convenient samples of secondary school students in Shandong, China. The pilot survey was conducted with 347 students (grades 8 and 11) to test the psychometric properties of the ESSA and other scales or questions in the questionnaire. Based on factor analysis and reliability and validity testing, the 16-item scale (the ESSA) with five factors showed adequate to good internal consistency, 2-week test-retest reliability, and satisfactory concurrent and predictive validity. Its factor structure was further demonstrated in the main survey with a confirmatory factor analysis illustrating a good fit of the proposed model based on a confirmatory factor analysis. The reliabilities of other scales and questions were also adequate to be used in this study. The main survey was subsequently conducted with a sample of 1627 secondary school (grades 7-12) students to examine the influencing factors of educational stress and its associations with mental health outcomes, including depression, happiness and suicidal behaviours. A wide range of individual, family, school and peer factors were found to have a significant association with the total ESSA and subscale scores. Most of the strong factors for academic stress were school or study-related, including rural school location, low school connectedness, perceived poor academic grades and frequent emotional conflicts with teachers and peers. Unexpectedly, family and parental factors, such as parental bonding, family connectedness and conflicts with parents were found to have little or no association with educational stress. Educational stress was the most predictive variable for depression, but was not strongly associated with happiness. It had a strong association with suicide ideation but not with suicide attempts. Among five subscales of the ESSA, ‘Study despondency’ score had the strongest associations with these mental health measures. Surprising, two subscales, ‘Self-expectation’ and ‘Worry about grades’ showed a protective effect on suicidal behaviours. An additional analysis revealed that although academic pressure was the most commonly reported reason for suicidal thinking, the occurrence of problems in peer relationships such as peer teasing and bullying, and romantic problems had a much stronger relationship with actual attempts. This study provides some insights into the nature and health implications of educational stress among Chinese adolescents. Findings in this study suggest that interventions on educational stress should focus on school environment and academic factors. Intervention programs focused on educational stress may have a high impact on the prevalence of common mental disorders such as depression. Efforts to increase perceived happiness however should cover a wider range of individual, family and school factors. The importance of healthy peer relationships should be adequately emphasised in suicide prevention. In addition, the newly developed scale (the ESSA) demonstrates sound psychometric properties and is expected to be used in future research into academic-related stress among secondary school adolescents.
Resumo:
The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.
Resumo:
The railhead is severely stressed under the localized wheel contact patch close to the gaps in insulated rail joints. A modified railhead profile in the vicinity of the gapped joint, through a shape optimization model based on a coupled genetic algorithm and finite element method, effectively alters the contact zone and reduces the railhead edge stress concentration significantly. Two optimization methods, a grid search method and a genetic algorithm, were employed for this optimization problem. The optimal results from these two methods are discussed and, in particular, their suitability for the rail end stress minimization problem is studied. Through several numerical examples, the optimal profile is shown to be unaffected by either the magnitude or the contact position of the loaded wheel. The numerical results are validated through a large-scale experimental study.
Resumo:
Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers of motor vehicles exhibit safe behaviours. Several car-following models are used in various micro-simulation models. This research compares the mainstream car following models’ capabilities of emulating precise driver behaviour parameters such as headways and Time to Collisions. The comparison firstly illustrates which model is more robust in the metric reproduction. Secondly, the study conducted a series of sensitivity tests to further explore the behaviour of each model. Based on the outcome of these two steps exploration of the models, a modified structure and parameters adjustment for each car-following model is proposed to simulate more realistic vehicle movements, particularly headways and Time to Collision, below a certain critical threshold. NGSIM vehicle trajectory data is used to evaluate the modified models performance to assess critical safety events within traffic flow. The simulation tests outcomes indicate that the proposed modified models produce better frequency of critical Time to Collision than the generic models, while the improvement on the headway is not significant. The outcome of this paper facilitates traffic safety assessment using microscopic simulation.
Resumo:
Maize streak virus strain A (MSV-A), the causal agent of maize streak disease, is today one of the most serious biotic threats to African food security. Determining where MSV-A originated and how it spread transcontinentally could yield valuable insights into its historical emergence as a crop pathogen. Similarly, determining where the major extant MSV-A lineages arose could identify geographical hot spots of MSV evolution. Here, we use model-based phylogeographic analyses of 353 fully sequenced MSV-A isolates to reconstruct a plausible history of MSV-A movements over the past 150 years. We show that since the probable emergence of MSV-A in southern Africa around 1863, the virus spread transcontinentally at an average rate of 32.5 km/year (95% highest probability density interval, 15.6 to 51.6 km/year). Using distinctive patterns of nucleotide variation caused by 20 unique intra-MSV-A recombination events, we tentatively classified the MSV-A isolates into 24 easily discernible lineages. Despite many of these lineages displaying distinct geographical distributions, it is apparent that almost all have emerged within the past 4 decades from either southern or east-central Africa. Collectively, our results suggest that regular analysis of MSV-A genomes within these diversification hot spots could be used to monitor the emergence of future MSV-A lineages that could affect maize cultivation in Africa. © 2011, American Society for Microbiology.
Resumo:
This chapter is a tutorial that teaches you how to design extended finite state machine (EFSM) test models for a system that you want to test. EFSM models are more powerful and expressive than simple finite state machine (FSM) models, and are one of the most commonly used styles of models for model-based testing, especially for embedded systems. There are many languages and notations in use for writing EFSM models, but in this tutorial we write our EFSM models in the familiar Java programming language. To generate tests from these EFSM models we use ModelJUnit, which is an open-source tool that supports several stochastic test generation algorithms, and we also show how to write your own model-based testing tool. We show how EFSM models can be used for unit testing and system testing of embedded systems, and for offline testing as well as online testing.
Resumo:
A Delay Tolerant Network (DTN) is one where nodes can be highly mobile, with long message delay times forming dynamic and fragmented networks. Traditional centralised network security is difficult to implement in such a network, therefore distributed security solutions are more desirable in DTN implementations. Establishing effective trust in distributed systems with no centralised Public Key Infrastructure (PKI) such as the Pretty Good Privacy (PGP) scheme usually requires human intervention. Our aim is to build and compare different de- centralised trust systems for implementation in autonomous DTN systems. In this paper, we utilise a key distribution model based on the Web of Trust principle, and employ a simple leverage of common friends trust system to establish initial trust in autonomous DTN’s. We compare this system with two other methods of autonomously establishing initial trust by introducing a malicious node and measuring the distribution of malicious and fake keys. Our results show that the new trust system not only mitigates the distribution of fake malicious keys by 40% at the end of the simulation, but it also improved key distribution between nodes. This paper contributes a comparison of three de-centralised trust systems that can be employed in autonomous DTN systems.
Resumo:
Abstract. For interactive systems, recognition, reproduction, and generalization of observed motion data are crucial for successful interaction. In this paper, we present a novel method for analysis of motion data that we refer to as K-OMM-trees. K-OMM-trees combine Ordered Means Models (OMMs) a model-based machine learning approach for time series with an hierarchical analysis technique for very large data sets, the K-tree algorithm. The proposed K-OMM-trees enable unsupervised prototype extraction of motion time series data with hierarchical data representation. After introducing the algorithmic details, we apply the proposed method to a gesture data set that includes substantial inter-class variations. Results from our studies show that K-OMM-trees are able to substantially increase the recognition performance and to learn an inherent data hierarchy with meaningful gesture abstractions.
Resumo:
Portable water filled barriers (PWFB) are semi-rigid roadside barriers which have the potential to display good crash attenuation characteristics at low and moderate impact speeds. The traditional mesh based numerical methods alone fail to simulate this type of impact with precision, stability and efficiency. This paper proposes to develop an advanced simulation model based on the combination of Smoothed Particles Hydrodynamics (SPH), a meshless method, and finite element method (FEM) for fluid-structure analysis using the commercially available software package LS-Dyna. The interaction between SPH particles and FEA elements is studied in this paper. Two methods of element setup at the element boundary were investigated. The response of the impacted barrier and fluid inside were analysed and compared. The system response and lagging were observed and reported in this paper. It was demonstrated that coupled SPH/FEM can be used in full scale PWFB modelling application. This will aid the research in determining the best initial setup to couple FEA and SPH in road safety barrier for impact response and safety analysis in the future.
Resumo:
News blog hot topics are important for the information recommendation service and marketing. However, information overload and personalized management make the information arrangement more difficult. Moreover, what influences the formation and development of blog hot topics is seldom paid attention to. In order to correctly detect news blog hot topics, the paper first analyzes the development of topics in a new perspective based on W2T (Wisdom Web of Things) methodology. Namely, the characteristics of blog users, context of topic propagation and information granularity are unified to analyze the related problems. Some factors such as the user behavior pattern, network opinion and opinion leader are subsequently identified to be important for the development of topics. Then the topic model based on the view of event reports is constructed. At last, hot topics are identified by the duration, topic novelty, degree of topic growth and degree of user attention. The experimental results show that the proposed method is feasible and effective.
Resumo:
Identifying the design features that impact construction is essential to developing cost effective and constructible designs. The similarity of building components is a critical design feature that affects method selection, productivity, and ultimately construction cost and schedule performance. However, there is limited understanding of what constitutes similarity in the design of building components and limited computer-based support to identify this feature in a building product model. This paper contributes a feature-based framework for representing and reasoning about component similarity that builds on ontological modelling, model-based reasoning and cluster analysis techniques. It describes the ontology we developed to characterize component similarity in terms of the component attributes, the direction, and the degree of variation. It also describes the generic reasoning process we formalized to identify component similarity in a standard product model based on practitioners' varied preferences. The generic reasoning process evaluates the geometric, topological, and symbolic similarities between components, creates groupings of similar components, and quantifies the degree of similarity. We implemented this reasoning process in a prototype cost estimating application, which creates and maintains cost estimates based on a building product model. Validation studies of the prototype system provide evidence that the framework is general and enables a more accurate and efficient cost estimating process.