327 resultados para Magnetic nano-particles
Resumo:
Vacuuming can be a source of indoor exposure to biological and non-biological aerosols, although there is little data that describes the magnitude of emissions from the vacuum cleaner itself. We therefore sought to quantify emission rates of particles and bacteria from a large group of vacuum cleaners and investigate their potential determinants, including temperature, dust bags, exhaust filters, price and age. Emissions of particles between 0.009 and 20 µm and bacteria were measured from 21 vacuums. Ultrafine (<100 nm) particle emission rates ranged from 4.0 × 10^6 to 1.1 × 10^11 particles min-1. Emission of 0.54 to 20 µm particles ranged from 4.0 × 10^4 to 1.2 × 10^9 particles min-1. PM2.5 emissions were between 2.4 × 10-1 and 5.4 × 10^3 µg min-1. Bacteria emissions ranged from 0 to 7.4 × 10^5 bacteria min-1 and were poorly correlated with dust bag bacteria content and particle emissions. Large variability in emission of all parameters was observed across the 21 vacuums we assessed, which was largely not attributable to the range of determinant factors we assessed. Vacuum cleaner emissions contribute to indoor exposure to non-biological and biological aerosols when vacuuming, and this may vary markedly depending on the vacuum used.
Resumo:
STUDY OBJECTIVES: To determine whether cerebral metabolite changes may underlie abnormalities of neurocognitive function and respiratory control in OSA. DESIGN: Observational, before and after CPAP treatment. SETTING: Two tertiary hospital research institutes. PARTICIPANTS: 30 untreated severe OSA patients, and 25 age-matched healthy controls, all males free of comorbidities, and all having had detailed structural brain analysis using voxel-based morphometry (VBM). MEASUREMENTS AND RESULTS: Single voxel bilateral hippocampal and brainstem, and multivoxel frontal metabolite concentrations were measured using magnetic resonance spectroscopy (MRS) in a high resolution (3T) scanner. Subjects also completed a battery of neurocognitive tests. Patients had repeat testing after 6 months of CPAP. There were significant differences at baseline in frontal N-acetylaspartate/choline (NAA/Cho) ratios (patients [mean (SD)] 4.56 [0.41], controls 4.92 [0.44], P = 0.001), and in hippocampal choline/creatine (Cho/Cr) ratios (0.38 [0.04] vs 0.41 [0.04], P = 0.006), (both ANCOVA, with age and premorbid IQ as covariates). No longitudinal changes were seen with treatment (n = 27, paired t tests), however the hippocampal differences were no longer significant at 6 months, and frontal NAA/Cr ratios were now also significantly different (patients 1.55 [0.13] vs control 1.65 [0.18] P = 0.01). No significant correlations were found between spectroscopy results and neurocognitive test results, but significant negative correlations were seen between arousal index and frontal NAA/Cho (r = -0.39, corrected P = 0.033) and between % total sleep time at SpO(2) < 90% and hippocampal Cho/Cr (r = -0.40, corrected P = 0.01). CONCLUSIONS: OSA patients have brain metabolite changes detected by MRS, suggestive of decreased frontal lobe neuronal viability and integrity, and decreased hippocampal membrane turnover. These regions have previously been shown to have no gross structural lesions using VBM. Little change was seen with treatment with CPAP for 6 months. No correlation of metabolite concentrations was seen with results on neurocognitive tests, but there were significant negative correlations with OSA severity as measured by severity of nocturnal hypoxemia. CITATION: O'Donoghue FJ; Wellard RM; Rochford PD; Dawson A; Barnes M; Ruehland WR; Jackson ML; Howard ME; Pierce RJ; Jackson GD. Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment.
Resumo:
Materials consisting of anatase linked to Laponite particles were synthesized by the reaction of TiOSO4 with Laponite, and were used for the degradation of pesticides. All these materials were characterized by XRD, FTIR, Raman, TEM, specific surface area and porosity determinations. Based on the amount of photoactive phase per unit mass of the clay mineral, not based on the total weight of the catalysts, these porous catalysts were displaying a high degradation rate than commercial P25. The TiO2 immobilized clay mineral catalysts can sediment in few minutes and could be readily separated out from a slurry system after the photocatalytic reaction. Settling properties of these catalysts are enormously high in aqueous media in contrast to P25.
Resumo:
Filtration membrane technology has already been employed to remove various organic effluents produced from the textile, paper, plastic, leather, food and mineral processing industries. To improve membrane efficiency and alleviate membrane fouling, an integrated approach is adopted that combines membrane filtration and photocatalysis technology. In this study, alumina nanofiber (AF) membranes with pore size of about 10 nm (determined by the liquid-liquid displacement method) have been synthesized through an in situ hydrothermal reaction, which permitted a large flux and achieved high selectivity. Silver nanoparticles (Ag NPs) are subsequently doped on the nanofibers of the membranes. Silver nanoparticles can strongly absorb visible light due to the surface plasmon resonance (SPR) effect, and thus induce photocatalytic degradation of organic dyes, including anionic, cationic and neutral dyes, under visible light irradiation. In this integrated system, the dyes are retained on the membrane surface, their concentration in the vicinity of the Ag NPs are high and thus can be efficiently decomposed. Meanwhile, the usual flux deterioration caused by the accumulation of the filtered dyes in the passage pores can be avoided. For example, when an aqueous solution containing methylene blue is processed using an integrated membrane, a large flux of 200 L m-2 h-1 and a stable permeating selectivity of 85% were achieved. The combined photocatalysis and filtration function leads to superior performance of the integrated membranes, which have a potential to be used for the removal of organic pollutants in drinking water.
Resumo:
The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.
Resumo:
Sixteen formalin-fixed foetal livers were scanned in vitro using a new system for estimating volume from a sequence of multiplanar 2D ultrasound images. Three different scan techniques were used (radial, parallel and slanted) and four volume estimation algorithms (ellipsoid, planimetry, tetrahedral and ray tracing). Actual liver volumes were measured by water displacement. Twelve of the sixteen livers also received x-ray computed tomography (CT) and magnetic resonance (MR) scans and the volumes were calculated using voxel counting and planimetry. The percentage accuracy (mean ± SD) was 5.3 ± 4.7%, −3.1 ± 9.6% and −0.03 ± 9.7% for ultrasound (radial scans, ray volumes), MR and CT (voxel counting) respectively. The new system may be useful for accurately estimating foetal liver volume in utero.
Resumo:
Problems associated with processing whole sugarcane crop can be minimised by removing impurities during the clarification stage. As a first step, it is important to understand the colloidal chemistry of juice particles on a molecular level to assist development strategies for effective clarification performance. This paper presents the composition and surface characteristics of colloidal particles originating from various juice types by using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS) and zeta potential measurements. The composition and surface characteristics of colloidal juice particles are reported. The results indicate that there are three types of colloidal particles present viz., an aluminosilicate compound, silica and iron oxide, with the latter two being abundant. Proteins, polysaccharides and organic acids were identified on the surface of particles in juice. The overall particle charge varies from –2 mV to –6 mV. In comparison to juice expressed from burnt cane, the zeta potential values were more negative with juice particles originating from whole crop. This in part explains why these juices are difficult to clarify.
Resumo:
The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.
Resumo:
In this study, magnetohydrodynamic natural convection boundary layer flow of an electrically conducting and viscous incompressible fluid along a heated vertical flat plate with uniform heat and mass flux in the presence of strong cross magnetic field has been investigated. For smooth integrations the boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation as well as the free variable formulation. The nonsimilar parabolic partial differential equations are integrated numerically for Pr ≪1 that is appropriate for liquid metals against the local Hartmann parameter ξ . Further, asymptotic solutions are obtained near the leading edge using regular perturbation method for smaller values of ξ . Solutions for values of ξ ≫ 1 are also obtained by employing the matched asymptotic technique. The results obtained for small, large and all ξ regimes are examined in terms of shear stress, τw, rate of heat transfer, qw, and rate of mass transfer, mw, for important physical parameter. Attention has been given to the influence of Schmidt number, Sc, buoyancy ratio parameter, N and local Hartmann parameter, ξ on velocity, temperature and concentration distributions and noted that velocity and temperature of the fluid achieve their asymptotic profiles for Sc ≥ 10:0.
Resumo:
An elevated particle number concentration (PNC) observed during nucleation events could play a significant contribution to the total particle load and therefore to the air pollution in the urban environments. Therefore, a field measurement study of PNC was commenced to investigate the temporal and spatial variations of PNC within the urban airshed of Brisbane, Australia. PNC was monitored at urban (QUT), roadside (WOO) and semi-urban (ROC) areas around the Brisbane region during 2009. During the morning traffic peak period, the highest relative fraction of PNC reached about 5% at QUT and WOO on weekdays. PNC peaks were observed around noon, which correlated with the highest solar radiation levels at all three stations, thus suggesting that high PNC levels were likely to be associated with new particle formation caused by photochemical reactions. Wind rose plots showed relatively higher PNC for the NE direction, which was associated with industrial pollution, accounting for 12%, 9% and 14% of overall PNC at QUT, WOO and ROC, respectively. Although there was no significant correlation between PNC at each station, the variation of PNC was well correlated among three stations during regional nucleation events. In addition, PNC at ROC was significantly influenced by upwind urban pollution during the nucleation burst events, with the average enrichment factor of 15.4. This study provides an insight into the influence of regional nucleation events on PNC in the Brisbane region and it the first study to quantify the effect of urban pollution on semi-urban PNC through the nucleation events. © 2012 Author(s).
Resumo:
The focus of this Editorial is recent developments in magnetic resonance imaging (MRI) modalities for evaluation of the microstructure and macromolecular organisation of articular cartilage. We place a specific emphasis on three types of measurements: (1) MRI transverse spin-relaxation mapping (T2 mapping); (2) diffusion-tensor imaging; and (3) compression micro-MRI (uMRI) measurements of articular cartilage in vitro. Such studies have a significant role to play in improving the understanding of the fundamental biomechanics of articular cartilage and in the development of in vitro models of early osteoarthritis. We discuss how the supramolecular organisation of the cartilage extracellular matrix and its behaviour under mechanical compression can be inferred from diffusion-tensor and T2 maps with in-plane resolution ~100 um. The emphasis is on in vitro studies performed under controlled physiological conditions but in vivo applications of T2 mapping and DTI are also briefly discussed.
Resumo:
Exposure to ultrafine particles (diameter less than 100 nm) is an important topic in epidemiological and toxicological studies. This study used the average particle number size distribution data obtained from our measurement survey in major micro-environments, together with the people activity pattern data obtained from the Italian Human Activity Pattern Survey to estimate the tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy. We developed a numerical methodology based on Monte Carlo method, in order to estimate the best combination from a probabilistic point of view. More than 106 different cases were analyzed according to a purpose built sub-routine and our results showed that the daily alveolar particle number and surface area deposited for all of the age groups considered was equal to 1.5 x 1011 particles and 2.5 x 1015 m2, respectively, varying slightly for males and females living in Northern or Southern Italy. In terms of tracheobronchial deposition, the corresponding values for daily particle number and surface area for all age groups was equal to 6.5 x 1010 particles and 9.9 x 1014 m2, respectively. Overall, the highest contributions were found to come from indoor cooking (female), working time (male) and transportation (i.e. traffic derived particles) (children).