118 resultados para Magnetic Nanosized Spinel Oxides
Resumo:
The rupture of atherosclerotic plaques is known to be associated with the stresses that act on or within the arterial wall. The extreme wall tensile stress (WTS) is usually recognized as a primary trigger for the rupture of vulnerable plaque. The present study used the in-vivo high-resolution multi-spectral magnetic resonance imaging (MRI) for carotid arterial plaque morphology reconstruction. Image segmentation of different plaque components was based on the multi-spectral MRI and co-registered with different sequences for the patient. Stress analysis was performed on totally four subjects with different plaque burden by fluid-structure interaction (FSI) simulations. Wall shear stress distributions are highly related to the degree of stenosis, while the level of its magnitude is much lower than the WTS in the fibrous cap. WTS is higher in the luminal wall and lower at the outer wall, with the lowest stress at the lipid region. Local stress concentrations are well confined in the thinner fibrous cap region, and usually locating in the plaque shoulder; the introduction of relative stress variation during a cycle in the fibrous cap can be a potential indicator for plaque fatigue process in the thin fibrous cap. According to stress analysis of the four subjects, a risk assessment in terms of mechanical factors could be made, which may be helpful in clinical practice. However, more subjects with patient specific analysis are desirable for plaque-stability study.
Resumo:
Introduction: Inflammation is a recognized risk factor for the vulnerable atherosclerotic plaque. The aim of this study was to explore whether there is a difference in the degree of Magnetic Resonance (MR) defined inflammation using Ultra Small Super-Paramagnetic Iron Oxide (USPIO) particles, within carotid atheroma in completely asymptomatic individuals and the asymptomatic carotid stenosis in a cohort of patients undergoing coronary artery bypass grafting (CABG). Methods: 10 patients awaiting CABG with asymptomatic carotid disease and 10 completely asymptomatic individuals with no documented coronary artery disease underwent multi-sequence MR imaging before and 36 hours post USPIO infusion. Images were manually segmented into quadrants and signal change in each quadrant, normalised to adjacent muscle signal, was calculated following USPIO administration. Results: The mean percentage of quadrants showing signal loss was 94% in the CABG group, compared to 24% in the completely asymptomatic individuals (p < 0.001). The carotid plaques from the CABG patients showed a significant mean signal intensity decrease of 16.4% after USPIO infusion (95% CI 10.6% to 22.2%; p < 0.001). The truly asymptomatic plaques showed a mean signal intensity increase (i.e. enhancement) after USPIO infusion of 8.4% (95% CI 2.6% to 14.2%; p = 0.007). The mean signal difference between the two groups was 24.9% (95% CI 16.7% to 33.0%; p < 0.001). Conclusions: These findings are consistent with the hypothesis that inflammatory atheroma is a systemic disease. The carotid territory is more likely to take up USPIO if another vascular territory is symptomatic.
Resumo:
Object. Individuals with carotid atherosclerosis develop symptoms following rupture of vulnerable plaques. Biomechanical stresses within this plaque may increase vulnerability to rupture. In this report the authors describe the use of in vivo carotid plaque imaging and computational mechanics to document the magnitude and distribution of intrinsic plaque stresses. Methods. Ten (five symptomatic and five asymptomatic) individuals underwent plaque characterization magnetic resonance (MR) imaging. Plaque geometry and composition were determined by multisequence review. Intrinsic plaque stress profiles were generated from 3D meshes by using finite element computational analysis. Differences in principal (shear) stress between normal and diseased sections of the carotid artery and between symptomatic and asymptomatic plaques were noted. Results. There was a significant difference in peak principal stress between diseased and nondiseased segments of the artery (mean difference 537.65 kPa, p < 0.05). Symptomatic plaques had higher mean stresses than asymptomatic plaques (627.6 kPa compared with 370.2 kPa, p = 0.05), which were independent of luminal stenosis and plaque composition. Conclusions. Significant differences in plaque stress exist between plaques from symptomatic individuals and those from asymptomatic individuals. The MR imaging-based computational analysis may therefore be a useful aid to identification of vulnerable plaques in vivo.
Resumo:
Background: More than half of all cerebral ischemic events are the result of rupture of extracranial plaques. The clinical determination of carotid plaque vulnerability is currently based solely on luminal stenosis; however, it has been increasingly suggested that plaque morphology and biomechanical stress should also be considered. We used finite element analysis based on in vivo magnetic resonance imaging (MRI) to simulate the stress distributions within plaques of asymptomatic and symptomatic individuals. Methods: Thirty nonconsecutive subjects (15 symptomatic and 15 asymptomatic) underwent high-resolution multisequence in vivo MRI of the carotid bifurcation. Stress analysis was performed based on the geometry derived from in vivo MRI of the carotid artery at the point of maximal stenosis. The finite element analysis model considered plaque components to be hyperelastic. The peak stresses within the plaques of symptomatic and asymptomatic individuals were compared. Results: High stress concentrations were found at the shoulder regions of symptomatic plaques, and the maximal stresses predicted in this group were significantly higher than those in the asymptomatic group (508.2 ± 193.1 vs 269.6 ± 107.9 kPa; P = .004). Conclusions: Maximal predicted plaque stresses in symptomatic patients were higher than those predicted in asymptomatic patients by finite element analysis, suggesting the possibility that plaques with higher stresses may be more prone to be symptomatic and rupture. If further validated by large-scale longitudinal studies, biomechanical stress analysis based on high resolution in vivo MRI could potentially act as a useful tool for risk assessment of carotid atheroma. It may help in the identification of patients with asymptomatic carotid atheroma at greatest risk of developing symptoms or mild-to-moderate symptomatic stenoses, which currently fall outside current clinical guidelines for intervention.
Resumo:
Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.
Resumo:
Background Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Methods Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. Findings The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+ 2,+1,− 2 relative to the apex, (p < 0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. Interpretation While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning.
Resumo:
Isolating, purifying, and identifying proteins in complex biological matrices is often difficult, time consuming, and unreliable. Herein we describe a rapid screening technique for proteins in biological matrices that combines selective protein isolation with direct surface enhanced Raman spectroscopy (SERS) detection. Magnetic core gold nanoparticles were synthesised, characterised, and subsequently functionalized with recombinant human erythropoietin (rHuEPO)-specific antibody. The functionalized nanoparticles were used to capture rHuEPO from horse blood plasma within 15 minutes. The selective binding between the protein and the functionalized nanoparticles was monitored by SERS. The purified protein was then released from the nanoparticles’ surface and directly spectroscopically identified on a commercial nanopillar SERS substrate. ELISA independently confirmed the SERS identification and quantified the released rHuEPO. Finally, the direct SERS detection of the extracted protein was successfully demonstrated for in-field screening by a handheld Raman spectrometer within 1 minute sample measurement time.
Resumo:
BACKGROUND Hydrogel-based cell cultures are excellent tools for studying physiological events occurring in the growth and proliferation of cells, including cancer cells. Diffusion magnetic resonance is a physical technique that has been widely used for the characterisation of biological systems as well as hydrogels. In this work, we applied diffusion magnetic resonance imaging (MRI) to hydrogel-based cultures of human ovarian cancer cells. METHODS Diffusion-weighted spin-echo MRI measurements were used to obtain spatially-resolved maps of apparent diffusivities for hydrogel samples with different compositions, cell loads and drug (Taxol) treatment regimes. The samples were then characterised using their diffusivity histograms, mean diffusivities and the respective standard deviations, and pairwise Mann-Whitney tests. The elastic moduli of the samples were determined using mechanical compression testing. RESULTS The mean apparent diffusivity of the hydrogels was sensitive to the polymer content, cell load and Taxol treatment. For a given sample composition, the mean apparent diffusivity and the elastic modulus of the hydrogels exhibited a negative correlation. CONCLUSIONS Diffusivity of hydrogel-based cancer cell culture constructs is sensitive to both cell proliferation and Taxol treatment. This suggests that diffusion-weighted imaging is a promising technique for non-invasive monitoring of cancer cell proliferation in hydrogel-based, cellularly-sparse 3D cell cultures. The negative correlation between mean apparent diffusivity and elastic modulus suggests that the diffusion coefficient is indicative of the average density of the physical microenvironment within the hydrogel construct.
Resumo:
Aberrant glycosylation of proteins is a hallmark of tumorigenesis, and could provide diagnostic value in cancer detection. Human saliva is an ideal source of glycoproteins due to the relatively high proportion of glycosylated proteins in the salivary proteome. Moreover, saliva collection is non-invasive, technically straightforward and the sample collection and storage is relatively easy. Although, differential glycosylation of proteins can be indicative of disease states, identification of differential glycosylation from clinical samples is not trivial. To facilitate salivary glycoprotein biomarker discovery, we optimised a method for differential glycoprotein enrichment from human saliva based on lectin magnetic bead arrays (saLeMBA). Selected lectins from distinct reactivity groups were used in the saLeMBA platform to enrich salivary glycoproteins from healthy volunteer saliva. The technical reproducibility of saLeMBA was analysed with LC-MS/MS to identify the glycosylated proteins enriched by each lectin. Our saLeMBA platform enabled robust glycoprotein enrichment in a glycoprotein- and lectin-specific manner consistent with known protein-specific glycan profiles. We demonstrated that saLeMBA is a reliable method to enrich and detect glycoproteins present in human saliva.
Resumo:
Yttrium silicates (Y-Si-O oxides), including Y2Si2O7, Y2SiO5, and Y4·67(SiO4)3O apatite, have attracted wide attentions from material scientists and engineers, because of their extensive polymorphisms and important roles as grain boundary phases in improving the high-temperature mechanical/thermal properties of Si3N4and SiC ceramics. Recent interest in these materials has been renewed by their potential applications as high-temperature structural ceramics, oxidation protective coatings, and environmental barrier coatings (EBCs). The salient properties of Y-Si-O oxides are strongly related to their unique chemical bonds and microstructure features. An in-depth understanding on the synthesis - multi-scale structure-property relationships of the Y-Si-O oxides will shine a light on their performance and potential applications. In this review, recent progress of the synthesis, multi-scale structures, and properties of the Y-Si-O oxides are summarised. First, various methods for the synthesis of Y-Si-O ceramics in the forms of powders, bulks, and thin films/coatings are reviewed. Then, the crystal structures, chemical bonds, and atomic microstructures of the polymorphs in the Y-Si-O system are summarised. The third section focuses on the properties of Y-Si-O oxides, involving the mechanical, thermal, dielectric, and tribological properties, their environmental stability, and their structure-property relationships. The outlook for potential applications of Y-Si-O oxides is also highlighted.
Resumo:
Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.
Resumo:
In this study, a well-dispersed γ-Y2Si2O 7 ethanol-based suspension with 30 vol% solid loading was prepared by adding 1 dwb% polyethylene imine dispersant, which allows feeble magnetic γ-Y2Si2O7 particles with anisotropic magnetic susceptibility to rotate in a 12 T strong magnetic field during slip casting, resulting in the development of a strong texture in green bodies. Pressureless sintering gives rise to more pronounced grain growth in the textured sample than in the untextured sample prepared without the magnetic field due to the rapid migration of the grain boundaries of the well-oriented grains, which was revealed by constant-heating-rate sintering kinetics. It was found that the use of two-step sintering is very efficient not only for inhibiting the grain growth but also for enhancing the texture. This implies that controlled grain growth is crucial for enhancing texture development in γ-Y2Si2O7.
Resumo:
PURPOSE To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. METHODS We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. RESULTS We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. CONCLUSIONS We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain.