130 resultados para Machine translation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problem addressed Wrist-worn accelerometers are associated with greater compliance. However, validated algorithms for predicting activity type from wrist-worn accelerometer data are lacking. This study compared the activity recognition rates of an activity classifier trained on acceleration signal collected on the wrist and hip. Methodology 52 children and adolescents (mean age 13.7 +/- 3.1 year) completed 12 activity trials that were categorized into 7 activity classes: lying down, sitting, standing, walking, running, basketball, and dancing. During each trial, participants wore an ActiGraph GT3X+ tri-axial accelerometer on the right hip and the non-dominant wrist. Features were extracted from 10-s windows and inputted into a regularized logistic regression model using R (Glmnet + L1). Results Classification accuracy for the hip and wrist was 91.0% +/- 3.1% and 88.4% +/- 3.0%, respectively. The hip model exhibited excellent classification accuracy for sitting (91.3%), standing (95.8%), walking (95.8%), and running (96.8%); acceptable classification accuracy for lying down (88.3%) and basketball (81.9%); and modest accuracy for dance (64.1%). The wrist model exhibited excellent classification accuracy for sitting (93.0%), standing (91.7%), and walking (95.8%); acceptable classification accuracy for basketball (86.0%); and modest accuracy for running (78.8%), lying down (74.6%) and dance (69.4%). Potential Impact Both the hip and wrist algorithms achieved acceptable classification accuracy, allowing researchers to use either placement for activity recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives Recent research has shown that machine learning techniques can accurately predict activity classes from accelerometer data in adolescents and adults. The purpose of this study is to develop and test machine learning models for predicting activity type in preschool-aged children. Design Participants completed 12 standardised activity trials (TV, reading, tablet game, quiet play, art, treasure hunt, cleaning up, active game, obstacle course, bicycle riding) over two laboratory visits. Methods Eleven children aged 3–6 years (mean age = 4.8 ± 0.87; 55% girls) completed the activity trials while wearing an ActiGraph GT3X+ accelerometer on the right hip. Activities were categorised into five activity classes: sedentary activities, light activities, moderate to vigorous activities, walking, and running. A standard feed-forward Artificial Neural Network and a Deep Learning Ensemble Network were trained on features in the accelerometer data used in previous investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation). Results Overall recognition accuracy for the standard feed forward Artificial Neural Network was 69.7%. Recognition accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition accuracy for the Deep Learning Ensemble Network was 82.6%. For sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%, respectively. Conclusions Ensemble machine learning approaches such as Deep Learning Ensemble Network can accurately predict activity type from accelerometer data in preschool children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commercialization of aerial image processing is highly dependent on the platforms such as UAVs (Unmanned Aerial Vehicles). However, the lack of an automated UAV forced landing site detection system has been identified as one of the main impediments to allow UAV flight over populated areas in civilian airspace. This article proposes a UAV forced landing site detection system that is based on machine learning approaches including the Gaussian Mixture Model and the Support Vector Machine. A range of learning parameters are analysed including the number of Guassian mixtures, support vector kernels including linear, radial basis function Kernel (RBF) and polynormial kernel (poly), and the order of RBF kernel and polynormial kernel. Moreover, a modified footprint operator is employed during feature extraction to better describe the geometric characteristics of the local area surrounding a pixel. The performance of the presented system is compared to a baseline UAV forced landing site detection system which uses edge features and an Artificial Neural Network (ANN) region type classifier. Experiments conducted on aerial image datasets captured over typical urban environments reveal improved landing site detection can be achieved with an SVM classifier with an RBF kernel using a combination of colour and texture features. Compared to the baseline system, the proposed system provides significant improvement in term of the chance to detect a safe landing area, and the performance is more stable than the baseline in the presence of changes to the UAV altitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To synthesise recent research on the use of machine learning approaches to mining textual injury surveillance data. Design Systematic review. Data sources The electronic databases which were searched included PubMed, Cinahl, Medline, Google Scholar, and Proquest. The bibliography of all relevant articles was examined and associated articles were identified using a snowballing technique. Selection criteria For inclusion, articles were required to meet the following criteria: (a) used a health-related database, (b) focused on injury-related cases, AND used machine learning approaches to analyse textual data. Methods The papers identified through the search were screened resulting in 16 papers selected for review. Articles were reviewed to describe the databases and methodology used, the strength and limitations of different techniques, and quality assurance approaches used. Due to heterogeneity between studies meta-analysis was not performed. Results Occupational injuries were the focus of half of the machine learning studies and the most common methods described were Bayesian probability or Bayesian network based methods to either predict injury categories or extract common injury scenarios. Models were evaluated through either comparison with gold standard data or content expert evaluation or statistical measures of quality. Machine learning was found to provide high precision and accuracy when predicting a small number of categories, was valuable for visualisation of injury patterns and prediction of future outcomes. However, difficulties related to generalizability, source data quality, complexity of models and integration of content and technical knowledge were discussed. Conclusions The use of narrative text for injury surveillance has grown in popularity, complexity and quality over recent years. With advances in data mining techniques, increased capacity for analysis of large databases, and involvement of computer scientists in the injury prevention field, along with more comprehensive use and description of quality assurance methods in text mining approaches, it is likely that we will see a continued growth and advancement in knowledge of text mining in the injury field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with the detection and prediction of rain in environmental recordings using different machine learning algorithms. The results obtained in this research will help ecologists to efficiently analyse environmental data and monitor biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Symptom burden in chronic kidney disease (CKD) is poorly understood. To date, the majority of research focuses on single symptoms and there is a lack of suitable multidimensional symptom measures. The purpose of this study was to modify, translate, cross-culturally adapt and psychometrically analyse the Dialysis Symptom Index (DSI). Methods The study methods involved four phases: modification, translation, pilot-testing with a bilingual non-CKD sample and then psychometric testing with the target population. Content validity was assessed using an expert panel. Inter-rater agreement, test-retest reliability and Cronbach’s alpha coefficient were calculated to demonstrate reliability of the modified DSI. Discriminative and convergent validity were assessed to demonstrate construct validity. Results Content validity index during translation was 0.98. In the pilot study with 25 bilingual students a moderate to perfect agreement (Kappa statistic = 0.60-1.00) was found between English and Arabic versions of the modified DSI. The main study recruited 433 patients CKD with stages 4 and 5. The modified DSI was able to discriminate between non-dialysis and dialysis groups (p < 0.001) and demonstrated convergent validity with domains of the Kidney Disease Quality of Life short form. Excellent test-retest and internal consistency (Cronbach’s α = 0.91) reliability were also demonstrated. Conclusion The Arabic version of the modified DSI demonstrated good psychometric properties, measures the multidimensional nature of symptoms and can be used to assess symptom burden at different stages of CKD. The modified instrument, renamed the CKD Symptom Burden Index (CKD-SBI), should encourage greater clinical and research attention to symptom burden in CKD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mining industry is highly suitable for the application of robotics and automation technology since the work is arduous, dangerous and often repetitive. This paper describes the development of an automation system for a physically large and complex field robotic system - a 3,500 tonne mining machine (a dragline). The major components of the system are discussed with a particular emphasis on the machine/operator interface. A very important aspect of this system is that it must work cooperatively with a human operator, seamlessly passing the control back and forth in order to achieve the main aim - increased productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mining industry presents us with a number of ideal applications for sensor based machine control because of the unstructured environment that exists within each mine. The aim of the research presented here is to increase the productivity of existing large compliant mining machines by retrofitting with enhanced sensing and control technology. The current research focusses on the automatic control of the swing motion cycle of a dragline and an automated roof bolting system. We have achieved: * closed-loop swing control of an one-tenth scale model dragline; * single degree of freedom closed-loop visual control of an electro-hydraulic manipulator in the lab developed from standard components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Cancer-related fatigue (CRF) is the most common and distressing symptom reported by breast cancer survivors. The primary aim of this study was to translate and evaluate psychometrically for the first time a Spanish version of the Piper Fatigue Scale-Revised (S-PFS-R). Methods One hundred and eleven women with stage I–IIIA breast cancer who had completed their primary cancer therapy in the previous 6 months with the exception of hormone therapy completed the S-PFS-R, the Profile of Mood States (POMS) Fatigue (POMS-F) and Vigor subscales (POMS-V), and bilateral force handgrip testing. Data analysis included test–retest reliability, construct validity, criterion-related validity, and exploratory factor analyses. Results Test–retest reliability was satisfactory (r > 0.86), and all subscales showed moderate to high construct validity estimates [corrected item-subscale correlations (Pearson r = ≥ 0.65)]. The exploratory factor analysis revealed four dimensions with 75.5 % of the common variance explained. The S-PFS-R total score positively correlated with the POMS-F subscale (r = 0.50–0.78) and negatively with the POMS-V subscale (r = −0.13 to −0.44) confirming criterion-related validity. Negative correlations among force handgrip testing, subscales, and total scores were weak (r = −0.26 to −0.29). Conclusions The Spanish version of PFS-R shows satisfactory psychometric properties in a sample of breast cancer survivors. This is the first study to translate the PFS-R into Spanish and further testing is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Concordance is characterised as a negotiation-like health communication approach based on an equal and collaborative partnership between patients and health professionals. The Leeds Attitudes to Concordance II (LATCon II) scale was developed to measure the attitudes towards concordance. The purpose of this study was to translate the LATCon II into Chinese and psychometrically test the Chinese version of LATCon II (C-LATCon II). Methods The study involved three phases: i) translation and cross-cultural adaptation; ii) pilot study, and; iii) a cross-sectional survey (n = 366). Systematic random sampling was used to recruit hypertensive patients from nine communities covering around 78,000 residents in China. Tests of psychometric properties included content validity, construct validity, criteria-related validity (correlation between the C-LATCon II and the Therapeutic Adherence Scale for Hypertensive Patients (TASHP)), internal reliability, and test-retest reliability (n = 30). Results The study found that the C-LATCon II had a satisfactory content validity (item-level Content Validity Index (CVI) = 0.83-1, scale-level CVI/universal agreement = 0.89, and scale-level CVI/averaging calculation = 0.98), construct validity (four components extracted explained 56.66% of the total variance), internal reliability (Cronbach’s alpha of overall scale and four components was 0.78 and 0.66-0.84, respectively), and test-retest reliability (Pearson’s correlation coefficient = 0.82, p < 0.001; interclass correlation coefficient = 0.82, p < 0.001; linear weighted kappa3 statistic for each item = 0.40-0.65, p < 0.05). Criteria-related validity showed a weak association (Pearson’s correlation coefficient = 0.11, p < 0.05) between patients’ attitudes towards concordance during health communication and their health behaviours for hypertension management. Conclusions The C-LATCon II is a validated and reliable instrument which can be used to evaluate the attitudes to concordance in Chinese populations. Four components (health professionals’ attitudes, partnership between two parties, therapeutic decision making, and patients’ involvement) describe the attitudes towards concordance during health communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Everything revolves around desiring-machines and the production of desire… Schizoanalysis merely asks what are the machinic, social and technical indices on a socius that open to desiring-machines (Deleuze & Guattari, 1983, pp. 380-381). Achievement tests like NAPLAN are fairly recent, yet common, education policy initiatives in much of the Western world. They intersect with, use and change pre-existing logics of education, teaching and learning. There has been much written about the form and function of these tests, the ‘stakes’ involved and the effects of their practice. This paper adopts a different “angle of vision” to ask what ‘opens’ education to these regimes of testing(Roy, 2008)? This paper builds on previous analyses of NAPLAN as a modulating machine, or a machine characterised by the increased intensity of connections and couplings. One affect can be “an existential disquiet” as “disciplinary subjects attempt to force coherence onto a disintegrating narrative of self”(Thompson & Cook, 2012, p. 576). Desire operates at all levels of the education assemblage, however our argument is that achievement testing manifests desire as ‘lack’; seen in the desire for improved results, the desire for increased control, the desire for freedom, the desire for acceptance to name a few. For Deleuze and Guattari desire is irreducible to lack, instead desire is productive. As a productive assemblage, education machines operationalise and produce through desire; “Desire is a machine, and the object of the desire is another machine connected to it”(Deleuze & Guattari, 1983, p. 26). This intersection is complexified by the strata at which they occur, the molar and molecular connections and flows they make possible. Our argument is that when attention is paid to the macro and micro connections, the machines built and disassembled as a result of high-stakes testing, a map is constructed that outlines possibilities, desires and blockages within the education assemblage. This schizoanalytic cartography suggests a new analysis of these ‘axioms’ of testing and accountability. It follows the flows and disruptions made possible as different or altered connections are made and as new machines are brought online. Thinking of education machinically requires recognising that “every machine functions as a break in the flow in relation to the machine to which it is connected, but at the same time is also a flow itself, or the production of flow, in relation to the machine connected to it”(Deleuze & Guattari, 1983, p. 37). Through its potential to map desire, desire-production and the production of desire within those assemblages that have come to dominate our understanding of what is possible, Deleuze and Guattari’s method of schizoanalysis provides a provocative lens for grappling with the question of what one can do, and what lines of flight are possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lateralization of temporal lobe epilepsy (TLE) is critical for successful outcome of surgery to relieve seizures. TLE affects brain regions beyond the temporal lobes and has been associated with aberrant brain networks, based on evidence from functional magnetic resonance imaging. We present here a machine learning-based method for determining the laterality of TLE, using features extracted from resting-state functional connectivity of the brain. A comprehensive feature space was constructed to include network properties within local brain regions, between brain regions, and across the whole network. Feature selection was performed based on random forest and a support vector machine was employed to train a linear model to predict the laterality of TLE on unseen patients. A leave-one-patient-out cross validation was carried out on 12 patients and a prediction accuracy of 83% was achieved. The importance of selected features was analyzed to demonstrate the contribution of resting-state connectivity attributes at voxel, region, and network levels to TLE lateralization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past few years, the virtual machine (VM) placement problem has been studied intensively and many algorithms for the VM placement problem have been proposed. However, those proposed VM placement algorithms have not been widely used in today's cloud data centers as they do not consider the migration cost from current VM placement to the new optimal VM placement. As a result, the gain from optimizing VM placement may be less than the loss of the migration cost from current VM placement to the new VM placement. To address this issue, this paper presents a penalty-based genetic algorithm (GA) for the VM placement problem that considers the migration cost in addition to the energy-consumption of the new VM placement and the total inter-VM traffic flow in the new VM placement. The GA has been implemented and evaluated by experiments, and the experimental results show that the GA outperforms two well known algorithms for the VM placement problem.