206 resultados para Hybrid photocatalyst
Resumo:
In the modern built environment, building construction and demolition consume a large amount of energy and emits greenhouse gasses due to widely used conventional construction materials such as reinforced and composite concrete. These materials consume high amount of natural resources and possess high embodied energy. More energy is required to recycle or reuse such materials at the cessation of use. Therefore, it is very important to use recyclable or reusable new materials in building construction in order to conserve natural resources and reduce the energy and emissions associated with conventional materials. Advancements in materials technology have resulted in the introduction of new composite and hybrid materials in infrastructure construction as alternatives to the conventional materials. This research project has developed a lightweight and prefabricatable Hybrid Composite Floor Plate System (HCFPS) as an alternative to conventional floor system, with desirable properties, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fiber Reinforced Cement (GRC) and steel laminates at tensile regions. This research work explored the structural adequacy and performance characteristics of hybridised GRC, PU and steel laminate for the development of HCFPS. Performance characteristics of HCFPS were investigated using Finite Element (FE) method simulations supported by experimental testing. Parametric studies were conducted to develop the HCFPS to satisfy static performance using sectional configurations, spans, loading and material properties as the parameters. Dynamic response of HCFPS floors was investigated by conducting parametric studies using material properties, walking frequency and damping as the parameters. Research findings show that HCFPS can be used in office and residential buildings to provide acceptable static and dynamic performance. Design guidelines were developed for this new floor system. HCFPS is easy to construct and economical compared to conventional floor systems as it is lightweight and prefabricatable floor system. This floor system can also be demounted and reused or recycled at the cessation of use due to its component materials.
Resumo:
Understanding network traffic behaviour is crucial for managing and securing computer networks. One important technique is to mine frequent patterns or association rules from analysed traffic data. On the one hand, association rule mining usually generates a huge number of patterns and rules, many of them meaningless or user-unwanted; on the other hand, association rule mining can miss some necessary knowledge if it does not consider the hierarchy relationships in the network traffic data. Aiming to address such issues, this paper proposes a hybrid association rule mining method for characterizing network traffic behaviour. Rather than frequent patterns, the proposed method generates non-similar closed frequent patterns from network traffic data, which can significantly reduce the number of patterns. This method also proposes to derive new attributes from the original data to discover novel knowledge according to hierarchy relationships in network traffic data and user interests. Experiments performed on real network traffic data show that the proposed method is promising and can be used in real applications. Copyright2013 John Wiley & Sons, Ltd.
Resumo:
The success or effectiveness for any aircraft design is a function of many trade-offs. Over the last 100 years of aircraft design these trade-offs have been optimized and dominant aircraft design philosophies have emerged. Pilotless aircraft (or uninhabited airborne systems, UAS) present new challenges in the optimization of their configuration. Recent developments in battery and motor technology have seen an upsurge in the utility and performance of electric powered aircraft. Thus, the opportunity to explore hybrid-electric aircraft powerplant configurations is compelling. This thesis considers the design of such a configuration from an overall propulsive, and energy efficiency perspective. A prototype system was constructed using a representative small UAS internal combustion engine (10cc methanol two-stroke) and a 600W brushless Direct current (BLDC) motor. These components were chosen to be representative of those that would be found on typical small UAS. The system was tested on a dynamometer in a wind-tunnel and the results show an improvement in overall propulsive efficiency of 17% when compared to a non-hybrid powerplant. In this case, the improvement results from the utilization of a larger propeller that the hybrid solution allows, which shows that general efficiency improvements are possible using hybrid configurations for aircraft propulsion. Additionally this approach provides new improvements in operational and mission flexibility (such as the provision of self-starting) which are outlined in the thesis. Specifically, the opportunity to use the windmilling propeller for energy regeneration was explored. It was found (in the prototype configuration) that significant power (60W) is recoverable in a steep dive, and although the efficiency of regeneration is low, the capability can allow several options for improved mission viability. The thesis concludes with the general statement that a hybrid powerplant improves the overall mission effectiveness and propulsive efficiency of small UAS.
Resumo:
A synthetic reevesite-like material has been shown to decolorize selected dyes and degrade phenolic contaminants photocatalytically in water when irradiated with visible light. This material can photoactively decolorize dyes such as bromophenol blue, bromocresol green, bromothymol blue, thymol blue and methyl orange in less than 15 min under visible light radiation in the absence of additional oxidizing agents. Conversely, phenolic compounds suc has phenol, p-chlorophenol and p-nitrophenol are photocat- alytically degraded in approximately 3hwith additional H2O2 when irradiated with visible light. These reactions offer potentially energy effective pathways for the removal of recalcitrant organic waste contaminants.
Resumo:
In the real world there are many problems in network of networks (NoNs) that can be abstracted to a so-called minimum interconnection cut problem, which is fundamentally different from those classical minimum cut problems in graph theory. Thus, it is desirable to propose an efficient and effective algorithm for the minimum interconnection cut problem. In this paper we formulate the problem in graph theory, transform it into a multi-objective and multi-constraint combinatorial optimization problem, and propose a hybrid genetic algorithm (HGA) for the problem. The HGA is a penalty-based genetic algorithm (GA) that incorporates an effective heuristic procedure to locally optimize the individuals in the population of the GA. The HGA has been implemented and evaluated by experiments. Experimental results have shown that the HGA is effective and efficient.
Resumo:
This paper presents research findings and design strategies that illustrate how digital technology can be applied as a tool for hybrid placemaking in ways that would not be possible in purely digital or physical space. Digital technology has revolutionised the way people learn and gather new information. This trend has challenged the role of the library as a physical place, as well as the interplay of digital and physical aspects of the library. The paper provides an overview of how the penetration of digital technology into everyday life has affected the library as a place, both as designed by place makers, and, as perceived by library users. It then identifies a gap in current library research about the use of digital technology as a tool for placemaking, and reports results from a study of Gelatine – a custom built user check-in system that displays real-time user information on a set of public screens. Gelatine and its evaluation at The Edge, at State Library of Queensland illustrates how combining affordances of social, spatial and digital space can improve the connected learning experience among on-site visitors. Future design strategies involving gamifying the user experience in libraries are described based on Gelatine’s infrastructure. The presented design ideas and concepts are relevant for managers and designers of libraries as well as other informal, social learning environments.
Resumo:
The purpose of this paper is to investigate the edge condition between the digital layers and the physical layers of the city and how tangible expressions of the interrelationships between them to create and define new experiences of place, creating hybrid place. To date there has been discussion and investigation into understanding the importance of place, similarly into defining hybrid space. This paper explores principles of place and space to question how they can be applied into defining and proposing the notion of hybrid place in urban environments. The integration of media spaces into architecture provide infrastructure for the development of hybrid place. The physical boundaries of urban spaces become blurred through the integration of media such as computer technologies connecting the physical environment with the digital. Literature and case studies that reflect the current trends of use of technology by people in space and place within urban environments are examined.
Resumo:
This thesis developed and evaluated strategies for social and ubiquitous computing designs that can enhance connected learning and networking opportunities for users in coworking spaces. Based on a social and a technical design intervention deployed at the State Library of Queensland, the research findings illustrate the potential of combining social, spatial and digital affordances in order to nourish peer-to-peer learning, creativity, inspiration, and innovation. The study proposes a hybrid notion of placemaking as a new way of thinking about the design of coworking and interactive learning spaces.
Resumo:
The University of Queensland UltraCommuter concept is an ultra- light, low-drag, hybrid-electric sports coupe designed to minimize energy consumption and environmental impact while enhancing the performance, styling, features and convenience that motorists enjoy. This paper presents a detailed simulation study of the vehicle's performance and fuel economy using ADVISOR, including a detailed description of the component models and parameters assumed. Results from the study include predictions of a 0-100 kph acceleration time of ≺9s, and top speed of 170 kph, an electrical energy consumption of ≺67 Wh/km in ZEV mode and a petrol-equivalent fuel consumption of ≺2.5 L/100 km in charge-sustaining HEV mode. Overall, the results of the ADVISOR modelling confirm the UltraCommuter's potential to achieve high performance with high efficiency, and the authors look forward to a confirmation of these estimates following completion of the vehicle.
Resumo:
This paper presents a new simplified parametric analysis technique for the design of fuel cell and hybrid-electric vehicles. The technique utilizes a comprehensive set of ∼30 parameters to fully characterize the vehicle platform, powertrain components, vehicle performance requirements and driving conditions. It is best applied to the sizing of powertrain components and prediction of energy consumption in a vehicle. This new parametric technique makes a good complement to existing vehicle simulation software packages and therefore represents a potentially valuable tool for the hybrid vehicle designer.
Resumo:
Investigates the braking performance requirements of the UltraCommuter, a lightweight series hybrid electric vehicle currently under development at the University of Queensland. With a predicted vehicle mass of 600 kg and two in-wheel motors each capable of 500 Nm of peak torque, decelerations up to 0.46 g are theoretically possible using purely regenerative braking. With 99% of braking demands less than 0.35 g, essentially all braking can be regenerative. The wheel motors have sufficient peak torque capability to lock the rear wheels in combination with front axle braking, eliminating the need for friction braking at the rear. Emergency braking levels approaching 1 g are achieved by supplementation with front disk brakes. This paper presents equations describing the peak front and rear axle braking forces which occur under straight line braking, including gradients. Conventionally, to guarantee stability, mechanical front/rear proportioning of braking effort ensures that the front axle locks first. In this application, all braking is initially regenerative at the rear, and an adaptive ''by-wire'' proportioning system presented ensures this stability requirement is still satisfied. Front wheel drive and all wheel drive systems are also discussed. Finally, peak and continuous performance measures, not commonly provided for friction brakes, are derived for the UltraCommuter's motor capability and range of operation.
Resumo:
This study investigated how and to what degree “hybrid photography”—the simultaneous use of indexical and fictional properties and strategies— innovates the representation of animals within animalcentric, ecocentric frameworks. Design theory structured this project’s Practice-led, Visual research methodology framework. Grounded theory processes articulated emerging categories of hybrid photography through systematically and comparatively treating animal photography works for reflexive analysis. Design theory then applied and clarified categories, developing practice that re-visualised shark perspectives as new ecological discourse. Shadows, a creative practice installation, realised a full-scale photographic investigation into shark and marine animal realities of a specific environment—Heron Island and Gladstone, Great Barrier Reef—facing ecological crisis from dredging and development at Gladstone Harbour. Works rendered and explored hybrid photography’s capacity for illuminating nonhuman animals, in particular, sharks, and comprise 65% of this project’s weighting. This exegetical paper offers a definition, strategies and evaluation of hybrid photography in unsettling animal perspectives as effective ecological discourse, and comprises 35%.
Resumo:
This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and Exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an $R^2$ goodness of fit of 0.9994 and 0.9982 respectively over a 10 hour test period. The utility of the framework is demonstrated on a number of usage scenarios including real time monitoring and `what-if' analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.
Resumo:
This study reports the synthesis of extremely high aspect ratios (>3000) organic semiconductor nanowires of Ag–tetracyanoquinodimethane (AgTCNQ) on the surface of a flexible Ag fabric for the first time. These one-dimensional (1D) hybrid Ag/AgTCNQ nanostructures are attained by a facile, solution-based spontaneous reaction involving immersion of Ag fabrics in an acetonitrile solution of TCNQ. Further, it is discovered that these AgTCNQ nanowires show outstanding antibacterial performance against both Gram negative and Gram positive bacteria, which outperforms that of pristine Ag. The outcomes of this study also reflect upon a fundamentally important aspect that the antimicrobial performance of Ag-based nanomaterials may not necessarily be solely due to the amount of Ag+ ions leached from these nanomaterials, but that the nanomaterial itself may also play a direct role in the antimicrobial action. Notably, the applications of metal-organic semiconducting charge transfer complexes of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) have been predominantly restricted to electronic applications, except from our recent reports on their (photo)catalytic potential and the current case on antimicrobial prospects. This report on growth of these metal-TCNQ complexes on a fabric not only widens the window of these interesting materials for new biological applications, it also opens the possibilities for developing large-area flexible electronic devices by growing a range of metal-organic semiconducting materials directly on a fabric surface.